185 research outputs found

    Secretion of Genome-Free Hepatitis B Virus – Single Strand Blocking Model for Virion Morphogenesis of Para-retrovirus

    Get PDF
    As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an “immature” nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a “maturation signal” that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, “Single Strand Blocking” model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis

    Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod

    Get PDF
    Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod

    Phosphorylation State-Dependent Interactions of Hepadnavirus Core Protein with Host Factors

    Get PDF
    Dynamic phosphorylation and dephosphorylation of the hepadnavirus core protein C-terminal domain (CTD) are required for multiple steps of the viral life cycle. It remains unknown how the CTD phosphorylation state may modulate core protein functions but phosphorylation state-dependent viral or host interactions may play a role. In an attempt to identify host factors that may interact differentially with the core protein depending on its CTD phosphorylation state, pulldown assays were performed using the CTD of the duck hepatitis B virus (DHBV) and human hepatitis B virus (HBV) core protein, either with wild type (WT) sequences or with alanine or aspartic acid substitutions at the phosphorylation sites. Two host proteins, B23 and I2PP2A, were found to interact preferentially with the alanine-substituted CTD. Furthermore, the WT CTD became competent to interact with the host proteins upon dephosphorylation. Intriguingly, the binding site on the DHBV CTD for both B23 and I2PP2A was mapped to a region upstream of the phosphorylation sites even though B23 or I2PP2A binding to this site was clearly modulated by the phosphorylation state of the downstream and non-overlapping sequences. Together, these results demonstrate a novel mode of phosphorylation-regulated protein-protein interaction and provide new insights into virus-host interactions

    The role of mutations in core protein of hepatitis B virus in liver fibrosis

    Get PDF
    The core protein of hepatitis B virus encompasses B- and T-cell immunodominant epitopes and subdivided into two domains: the N-terminal and the functional C-terminal consisted phosphorylation sites. Mutations of the core gene may change the conformation of the core protein or cause alteration of important epitopes in the host immune response. In this study twenty nine men (mean age 40 ± 9 years old) with chronic hepatitis B were recruited for direct sequencing of the core gene. Serum ALT and HBV DNA level were measured at the time of liver biopsy. The effects of core protein mutations on patients' characteristics and subsequently mutations in B cell, T helper and cytotoxic T lymphocyte (CTL) epitopes and also C-terminal domain of core protein on the activity of liver disease was evaluated. Liver fibrosis was significantly increased in patients with core protein mutation (1.0 ± 0.8 vs 1.9 ± 1.4 for mean stage of fibrosis P = 0.05). Mutations in CTL epitopes and in phosphorylation sites of C-terminal domain of core protein also were associated with higher liver fibrosis (P = 0.003 and P = 0.04; Fisher's exact test for both). Patients with mutation in C-terminal domain had higher serum ALT (62 ± 17 vs 36 ± 12 IU/l, p = 0.02). Patients with mutations in B cell and T helper epitopes did not show significant difference in the clinical features. Our data suggests that core protein mutations in CTL epitopes and C-terminal domain accompanied with higher stage of liver fibrosis may be due to alterations in the function of core protein

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    Serine Phosphoacceptor Sites within the Core Protein of Hepatitis B Virus Contribute to Genome Replication Pleiotropically

    Get PDF
    The core protein of hepatitis B virus can be phosphorylated at serines 155, 162, and 170. The contribution of these serine residues to DNA synthesis was investigated. Core protein mutants were generated in which each serine was replaced with either alanine or aspartate. Aspartates can mimic constitutively phosphorylated serines while alanines can mimic constitutively dephosphorylated serines. The ability of these mutants to carry out each step of DNA synthesis was determined. Alanine substitutions decreased the efficiency of minus-strand DNA elongation, primer translocation, circularization, and plus-strand DNA elongation. Aspartate substitutions also reduced the efficiency of these steps, but the magnitude of the reduction was less. Our findings suggest that phosphorylated serines are required for multiple steps during DNA synthesis. It has been proposed that generation of mature DNA requires serine dephosphorylation. Our results suggest that completion of rcDNA synthesis requires phosphorylated serines

    Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice

    Get PDF
    Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease

    Oxytocin's neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial

    Get PDF
    The neuropeptide oxytocin may be an effective therapeutic strategy for the currently untreatable social and communication deficits associated with autism. Our recent paper reported that oxytocin mitigated autistic behavioral deficits through the restoration of activity in the ventromedial prefrontal cortex (vmPFC), as demonstrated with functional magnetic resonance imaging (fMRI) during a socio-communication task. However, it is unknown whether oxytocin exhibited effects at the neuronal level, which was outside of the specific task examined. In the same randomized, double-blind, placebo-controlled, within-subject cross-over clinical trial in which a single dose of intranasal oxytocin (24 IU) was administered to 40 men with high-functioning autism spectrum disorder (UMIN000002241/000004393), we measured N-acetylaspartate (NAA) levels, a marker for neuronal energy demand, in the vmPFC using (1)H-magnetic resonance spectroscopy ((1)H-MRS). The differences in the NAA levels between the oxytocin and placebo sessions were associated with oxytocin-induced fMRI signal changes in the vmPFC. The oxytocin-induced increases in the fMRI signal could be predicted by the NAA differences between the oxytocin and placebo sessions (P=0.002), an effect that remained after controlling for variability in the time between the fMRI and (1)H-MRS scans (P=0.006) and the order of administration of oxytocin and placebo (P=0.001). Furthermore, path analysis showed that the NAA differences in the vmPFC triggered increases in the task-dependent fMRI signals in the vmPFC, which consequently led to improvements in the socio-communication difficulties associated with autism. The present study suggests that the beneficial effects of oxytocin are not limited to the autistic behavior elicited by our psychological task, but may generalize to other autistic behavioral problems associated with the vmPFC

    Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels

    Get PDF
    Many intracellular microbial symbionts of arthropods are strictly vertically transmitted and manipulate their host's reproduction in ways that enhance their own transmission. Rare horizontal transmission events are nonetheless necessary for symbiont spread to novel host lineages. Horizontal transmission has been mostly inferred from phylogenetic studies but the mechanisms of spread are still largely a mystery. Here, we investigated transmission of two distantly related bacterial symbionts – Rickettsia and Hamiltonella – from their host, the sweet potato whitefly, Bemisia tabaci, to three species of whitefly parasitoids: Eretmocerus emiratus, Eretmocerus eremicus and Encarsia pergandiella. We also examined the potential for vertical transmission of these whitefly symbionts between parasitoid generations. Using florescence in situ hybridization (FISH) and transmission electron microscopy we found that Rickettsia invades Eretmocerus larvae during development in a Rickettsia-infected host, persists in adults and in females, reaches the ovaries. However, Rickettsia does not appear to penetrate the oocytes, but instead is localized in the follicular epithelial cells only. Consequently, Rickettsia is not vertically transmitted in Eretmocerus wasps, a result supported by diagnostic polymerase chain reaction (PCR). In contrast, Rickettsia proved to be merely transient in the digestive tract of Encarsia and was excreted with the meconia before wasp pupation. Adults of all three parasitoid species frequently acquired Rickettsia via contact with infected whiteflies, most likely by feeding on the host hemolymph (host feeding), but the rate of infection declined sharply within a few days of wasps being removed from infected whiteflies. In contrast with Rickettsia, Hamiltonella did not establish in any of the parasitoids tested, and none of the parasitoids acquired Hamiltonella by host feeding. This study demonstrates potential routes and barriers to horizontal transmission of symbionts across trophic levels. The possible mechanisms that lead to the differences in transmission of species of symbionts among species of hosts are discussed
    corecore