420 research outputs found

    Liquid-Solid Phase Transition of the System with Two particles in a Rectangular Box

    Full text link
    We study the statistical properties of two hard spheres in a two dimensional rectangular box. In this system, the relation like Van der Waals equation loop is obtained between the width of the box and the pressure working on side walls. The auto-correlation function of each particle's position is calculated numerically. By this calculation near the critical width, the time at which the correlation become zero gets longer according to the increase of the height of the box. Moreover, fast and slow relaxation processes like α\alpha and β\beta relaxations observed in supper cooled liquid are observed when the height of the box is sufficiently large. These relaxation processes are discussed with the probability distribution of relative position of two particles.Comment: 6 figure

    Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

    Full text link
    Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of data

    "Even if the test result is negative, they should be able to tell us what is wrong with us": a qualitative study of patient expectations of rapid diagnostic tests for malaria.

    Get PDF
    BACKGROUND: The debate on rapid diagnostic tests (RDTs) for malaria has begun to shift from whether RDTs should be used, to how and under what circumstances their use can be optimized. This has increased the need for a better understanding of the complexities surrounding the role of RDTs in appropriate treatment of fever. Studies have focused on clinician practices, but few have sought to understand patient perspectives, beyond notions of acceptability. METHODS: This qualitative study aimed to explore patient and caregiver perceptions and experiences of RDTs following a trial to assess the introduction of the tests into routine clinical care at four health facilities in one district in Ghana. Six focus group discussions and one in-depth interview were carried out with those who had received an RDT with a negative test result. RESULTS: Patients had high expectations of RDTs. They welcomed the tests as aiding clinical diagnoses and as tools that could communicate their problem better than they could, verbally. However, respondents also believed the tests could identify any cause of illness, beyond malaria. Experiences of patients suggested that RDTs were adopted into an existing system where patients are both physically and intellectually removed from diagnostic processes and where clinicians retain authority that supersedes tests and their results. In this situation, patients did not feel able to articulate a demand for test-driven diagnosis. CONCLUSIONS: Improvements in communication between the health worker and patient, particularly to explain the capabilities of the test and management of RDT negative cases, may both manage patient expectations and promote patient demand for test-driven diagnoses

    Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice

    Get PDF
    BACKGROUND: An epidemiological study conducted in Italy indicated that coffee has the greatest antioxidant capacity among the commonly consumed beverages. Green coffee bean is rich in chlorogenic acid and its related compounds. The effect of green coffee bean extract (GCBE) on fat accumulation and body weight in mice was assessed with the objective of investigating the effect of GCBE on mild obesity. METHODS: Male ddy mice were fed a standard diet containing GCBE and its principal constituents, namely, caffeine and chlorogenic acid, for 14 days. Further, hepatic triglyceride (TG) level was also investigated after consecutive administration (13 days) of GCBE and its constituents. To examine the effect of GCBE and its constituents on fat absorption, serum TG changes were evaluated in olive oil-loaded mice. In addition, to investigate the effect on hepatic TG metabolism, carnitine palmitoyltransferase (CPT) activity in mice was evaluated after consecutive ingestion (6 days) of GCBE and its constituents (caffeine, chlorogenic acid, neochlorogenic acid and feruloylquinic acid mixture). RESULTS: It was found that 0.5% and 1% GCBE reduced visceral fat content and body weight. Caffeine and chlorogenic acid showed a tendency to reduce visceral fat and body weight. Oral administration of GCBE (100 and 200 mg/kg· day) for 13 days showed a tendency to reduce hepatic TG in mice. In the same model, chlorogenic acid (60 mg/kg· day) reduced hepatic TG level. In mice loaded with olive oil (5 mL/kg), GCBE (200 and 400 mg/kg) and caffeine (20 and 40 mg/kg) reduced serum TG level. GCBE (1%), neochlorogenic acid (0.028% and 0.055%) and feruloylquinic acid mixture (0.081%) significantly enhanced hepatic CPT activity in mice. However, neither caffeine nor chlorogenic acid alone was found to enhance CPT activity. CONCLUSION: These results suggest that GCBE is possibly effective against weight gain and fat accumulation by inhibition of fat absorption and activation of fat metabolism in the liver. Caffeine was found to be a suppressor of fat absorption, while chlorogenic acid was found to be partially involved in the suppressive effect of GCBE that resulted in the reduction of hepatic TG level. Phenolic compounds such as neochlorogenic acid and feruloylquinic acid mixture, except chlorogenic acid, can enhance hepatic CPT activity

    Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism

    Get PDF
    Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Vineyard microclimate and yield under different plastic covers.

    Get PDF
    The use of plastic cover in vineyards minimizes effects of adverse weather conditions. The northwest of São Paulo State is one of the largest grape producing regions in Brazil; however, few studies investigate the effects of different plastic covers on vineyards in this region. This study compared the effect of black shading screen (BSS) and braided polypropylene film (BPF) on BRS Morena vineyard microclimate, grown on an overhead trellis system in the northwestern São Paulo. The experiments were carried out during three growing seasons (2012 ? 2014). BSS allowed superior incoming solar radiation (SR) transmissivity, resulting in higher net radiation (Rn), and higher ratio between photosynthetically active (PAR) and SR. No differences were observed between the average air temperatures (T) and relative humidity (RH) of covered environments (BPF and BSS) and outside condition (automatic weather station ? AWS), due to high air circulation, despite wind speed (WS) reduction caused by plastic covers. BPF provided better conditions for vineyard growth with higher fruit yield than vineyard under BSS regarding the number of shoots with bunches per plant, bunch and stem weights, longitudinal diameter of berries, quantity of fertile buds per shoot, and yield per shoot and per plant. BPF covers also influenced leaf size and growth speed of plants in vineyards. Keywords Black shading screen . Braided polypropylene film . BRS Morena . Leaf wetness duration . Yiel

    β-Hydroxy-β-Methylbutyrate (HMB) Normalizes Dexamethasone-Induced Autophagy-Lysosomal Pathway in Skeletal Muscle

    Get PDF
    Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of β-Hydroxy-β-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.This project has been funded by Abbott Nutrition R&D

    Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    Get PDF
    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636

    Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip

    Get PDF
    UMR AGAP - équipe DAAV - Diversité, adaptation et amélioration de la vigne[b]Background[/b] [br/]The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). [br/][b]Results[/b] [br/]Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. [br/][b]Conclusions[/b] [br/]This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variatio
    corecore