91 research outputs found

    Intentional Binding Is Driven by the Mere Presence of an Action and Not by Motor Prediction

    Get PDF
    Intentional binding refers to the fact that when a voluntary action produces a sensory outcome, action and outcome are perceived as being closer together in time. This phenomenon is often attributed, at least partially, to predictive motor mechanisms. However, previous studies failed to unequivocally attribute intentional binding to these mechanisms, since the contrasts that have been used to demonstrate intentional binding covered not only one but two processes: temporal control and motor identity prediction. In the present study we aimed to isolate the respective role of each of these processes in the emergence of intentional binding of action-effects. The results show that motor identity prediction does not modulate intentional binding of action-effects. Our findings cast doubts on the assumption that intentional binding of action effects is linked to internal forward predictive process

    Mental Imagery and Visual Working Memory

    Get PDF
    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage

    Compensation for Changing Motor Uncertainty

    Get PDF
    When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Saliency maps for finding changes in visual scenes?

    Get PDF
    Sudden changes in the environment reliably summon attention. This rapid change detection appears to operate in a similar fashion as pop-out in visual search, the phenomenon that very salient stimuli are directly attended, independently of the number of distracting objects. Pop-out is usually explained by the workings of saliency maps, i.e., map-like representations that code for the conspicuity at each location of the visual field. While past research emphasized similarities between pop-out search and change detection, our study highlights differences between the saliency computations in the two tasks: in contrast to pop-out search, saliency computation in change detection (i) operates independently across different stimulus properties (e.g., color and orientation), and (ii) is little influenced by trial history. These deviations from pop-out search are not due to idiosyncrasies of the stimuli or task design, as evidenced by a replication of standard findings in a comparable visual-search design. To explain these results, we outline a model of change detection involving the computation of feature-difference maps, which explains the known similarities and differences with visual search

    Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map

    Get PDF
    We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map

    The long-term consequences of retrieval demands during working memory

    Get PDF
    Although it is well known that distraction impairs immediate retrieval of items maintained in working memory (WM; e.g., during complex span tasks), some evidence suggests that these items are more likely to be recalled from episodic memory (EM) compared with items that were studied without any distraction (e.g., during simple span tasks). One account for this delayed advantage of complex span over simple span, or the McCabe effect (McCabe, Journal of Memory and Language, 58[2], 480–494, 2008), is that complex span affords covert retrieval opportunities that facilitate later retrieval from EM by cumulatively reactivating each successively presented item after distraction. This explanation focuses on the processing that occurs during presentation and maintenance of the items, but no work to date has explored whether the differential demands of immediate retrieval between simple and complex span may explain the effect. Accordingly, these experiments examined the impact of immediate retrieval demands on the McCabe effect by comparing typical immediate serial-recall instructions (i.e., recalling the words in their exact order of presentation) to immediate free-recall (Experiments 1–2) and no-recall (Experiments 2 and 3) instructions. The results suggested that the nature of retrieval may constrain the McCabe effect in some situations (Experiments 1–2), but its demands do not drive the McCabe effect given that it was observed in both serial-recall and no-recall conditions (Experiment 3). Instead, activities such as covert retrieval during the processing phase may underlie the McCabe effect, thus further evidencing the importance of processing in WM for the long-term retention of information
    corecore