12 research outputs found

    Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins

    Get PDF
    In the pharmaceutical industry, improving the early detection of drug-induced hepatotoxicity is essential as it is one of the most important reasons for attrition of candidate drugs during the later stages of drug development. The first objective of this study was to better characterize different cellular models (i.e., HepG2, HepaRG cells, and fresh primary human hepatocytes) at the gene expression level and analyze their metabolic cytochrome P450 capabilities. The cellular models were exposed to three different CYP450 inducers; beta-naphthoflavone (BNF), phenobarbital (PB), and rifampicin (RIF). HepG2 cells responded very weakly to the different inducers at the gene expression level, and this translated generally into low CYP450 activities in the induced cells compared with the control cells. On the contrary, HepaRG cells and the three human donors were inducible after exposure to BNF, PB, and RIF according to gene expression responses and CYP450 activities. Consequently, HepaRG cells could be used in screening as a substitute and/or in complement to primary hepatocytes for CYP induction studies. The second objective was to investigate the predictivity of the different cellular models to detect hepatotoxins (16 hepatotoxic and 5 nonhepatotoxic compounds). Specificity was 100% with the different cellular models tested. Cryopreserved human hepatocytes gave the highest sensitivity, ranging from 31% to 44% (depending on the donor), followed by lower sensitivity (13%) for HepaRG and HepG2 cells (6.3%). Overall, none of the models under study gave desirable sensitivities (80–100%). Consequently, a high metabolic capacity and CYP inducibility in cell lines does not necessarily correlate with a high sensitivity for the detection of hepatotoxic drugs. Further investigations are necessary to compare different cellular models and determine those that are best suited for the detection of hepatotoxic compounds

    An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied <it>in vitro </it>but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on <it>in vitro </it>systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the <it>in vitro </it>model system and model toxicant, respectively.</p> <p>Results</p> <p>The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.</p> <p>Conclusions</p> <p>Untargeted profiling of the polar and apolar metabolites of <it>in vitro </it>cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.</p

    Polymorphisms of the porcine cathepsins, growth hormone-releasing hormone and leptin receptor genes and their association with meat quality traits in Ukrainian Large White breed

    Get PDF
    © 2016, The Author(s). Cathepsins, growth hormone-releasing hormone (GHRH) and leptin receptor (LEPR) genes have been receiving increasing attention as potential markers for meat quality and pig performance traits. This study investigated the allele variants in four cathepsin genes (CTSB, CTSK, CTSL, CTSS), GHRH and LEPR in pure-bred Ukrainian Large White pigs and evaluated effects of the allele variants on meat quality characteristics. The study was conducted on 72 pigs. Genotyping was performed using PCR–RFLP technique. Meat quality characteristics analysed were intramuscular fat content, tenderness, total water content, ultimate pH, crude protein and ashes. A medium level of heterozygosity values was established for GHRH and LEPR genes which corresponded to very high levels of informativeness indexes. Cathepsins CTSL, CTSB and CTSK had a low level of heterozygosity, and CTSS did not segregate in this breed. Association studies established that intramuscular fat content and tenderness were affected by the allele variance in GHRH and LEPR but not by CTSB and CTSL genes. The GHRH results could be particularly relevant for the production of lean prime cuts as the A allele is associated with both, a lower meat fat content and better tenderness values, which are two attributes highly regarded by consumers. Results of this study suggest that selective breeding towards GHRH/AA genotype would be particularly useful for improving meat quality characteristics in the production systems involving lean Large White lines, which typically have less than 2% intramuscular fat content

    Drug Metabolism

    No full text
    Absorption, Distribution, Metabolism and Excretion (ADME) processes and their relationship with the design of dosage forms and the success of pharmacotherapy form the basis of this upper level undergraduate/graduate textbook. As an introduction oriented to pharmacy students, it is also written for scientist from different fields outside of pharmaceutics. (e.g. material scientist, material engineers, medicinal chemists) who might be working in a positions in pharmaceutical companies or whose work might benefit from basic training in the ADME concepts and some biological background. Pedagogical features such as objectives, keywords, discussion questions, summaries and case studies add valuable teaching tools. This book will provide not only general knowledge on ADME processes but also an updated insight on some hot topics such as drug transporters, multi-drug resistance related to pharmacokinetic phenomena, last generation pharmaceutical carriers (nanopharmaceuticals), in vitro and in vivo bioequivalence studies, biopharmaceuticals, pharmacogenomics, drug-drug and food-drug interactions, and in silico and in vitro prediction of ADME properties. In comparison with other similar textbooks, around half of the volume would be focused on the relationship between expanding scientific fields and ADME processes. Each of these burgeoning fields has a separate chapter in the second part of the volume, and was written with leading experts on the correspondent topic, including scientists and academics from USA and UK (Duquesne University School of Pharmacy, Indiana University School of Medicine, University of Utah College of Pharmacy, University of Maryland, University of Bath).Additionally, each of the initial chapters dealing with the generalities of drug absorption, distribution, metabolism and excretion would include relevant, classic examples related to each topic with appropriate illustrations (e.g. importance of active absorption of levodopa, implications in levodopa administration, drug drug interactions and food drug interactions emerging from the active uptake; intoxication with paracetamol as a result of glutathione depletion, CYP induction and its relationship with acute liver failure caused by paracetamol, etc).ADME Processes and Pharmaceutical Sciences is written as a core textbook for ADME processes, pharmacy, pharmacokinetics, drug delivery, biopharmaceutics, drug disposition, drug design and medicinal chemistry courses.Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Omics for prediction of environmental health effects: Blood leukocyte-based cross-omic profiling reliably predicts diseases associated with tobacco smoking

    Get PDF
    The utility of blood-based omic profiles for linking environmental exposures to their potential health effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we found that the combination of smoking-modified, genome-wide gene (including miRNA) expression and DNA methylation profiles predicts with remarkable reliability most diseases and conditions independently known to be causally associated with smoking (indicative estimates of sensitivity and positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered ubiquitination. The smoking-induced gene expression profiles overlap significantly with profiles present in blood cells of patients with lung cancer or coronary heart disease, diseases strongly associated with tobacco smoking. These results provide proof-of-principle support to the suggestion that omic profiling in peripheral blood has the potential of identifying early, disease-related perturbations caused by toxic exposures and may be a useful tool in hazard and risk assessment
    corecore