197 research outputs found

    Detection of emphysema progression in alpha 1-antitrypsin deficiency using CT densitometry; Methodological advances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer tomography (CT) densitometry is a potential tool for detecting the progression of emphysema but the optimum methodology is uncertain. The level of inspiration affects reproducibility but the ability to adjust for this variable is facilitated by whole lung scanning methods. However, emphysema is frequently localised to sub-regions of the lung and targeted densitometric sampling may be more informative than whole lung assessment.</p> <p>Methods</p> <p>Emphysema progression over a 2-year interval was assessed in 71 patients (alpha 1-antitrypsin deficiency with PiZ phenotype) with CT densitometry, using the 15<sup>th </sup>percentile point (Perc15) and voxel index (VI) -950 Hounsfield Units (HU) and -910 HU (VI -950 and -910) on whole lung, limited single slices, and apical, central and basal thirds. The relationship between whole lung densitometric progression (ΔCT) and change in CT-derived lung volume (ΔCT<sub>Vol</sub>) was characterised, and adjustment for lung volume using statistical modelling was evaluated.</p> <p>Results</p> <p>CT densitometric progression was statistically significant for all methods. ΔCT correlated with ΔCT<sub>Vol </sub>and linear regression indicated that nearly one half of lung density loss was secondary to apparent hyperinflation. The most accurate measure was obtained using a random coefficient model to adjust for lung volume and the greatest progression was detected by targeted sampling of the middle third of the lung.</p> <p>Conclusion</p> <p>Progressive hyperinflation may contribute significantly to loss of lung density, but volume effects and absolute tissue loss can be identified by statistical modelling. Targeted sampling of the middle lung region using Perc15 appears to be the most robust measure of emphysema progression.</p

    Therapeutic efficacy of alpha-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two randomised, double-blind, placebo-controlled trials have investigated the efficacy of IV alpha-1 antitrypsin (AAT) augmentation therapy on emphysema progression using CT densitometry.</p> <p>Methods</p> <p>Data from these similar trials, a 2-center Danish-Dutch study (n = 54) and the 3-center EXAcerbations and CT scan as Lung Endpoints (EXACTLE) study (n = 65), were pooled to increase the statistical power. The change in 15<sup>th </sup>percentile of lung density (PD15) measured by CT scan was obtained from both trials. All subjects had 1 CT scan at baseline and at least 1 CT scan after treatment. Densitometric data from 119 patients (AAT [Alfalastin<sup>® </sup>or Prolastin<sup>®</sup>], n = 60; placebo, n = 59) were analysed by a statistical/endpoint analysis method. To adjust for lung volume, volume correction was made by including the change in log-transformed total lung volume as a covariate in the statistical model.</p> <p>Results</p> <p>Mean follow-up was approximately 2.5 years. The mean change in lung density from baseline to last CT scan was -4.082 g/L for AAT and -6.379 g/L for placebo with a treatment difference of 2.297 (95% CI, 0.669 to 3.926; p = 0.006). The corresponding annual declines were -1.73 and -2.74 g/L/yr, respectively.</p> <p>Conclusions</p> <p>The overall results of the combined analysis of 2 separate trials of comparable design, and the only 2 controlled clinical trials completed to date, has confirmed that IV AAT augmentation therapy significantly reduces the decline in lung density and may therefore reduce the future risk of mortality in patients with AAT deficiency-related emphysema.</p> <p>Trial registration</p> <p>The EXACTLE study was registered in ClinicalTrials.gov as 'Antitrypsin (AAT) to Treat Emphysema in AAT-Deficient Patients'; ClinicalTrials.gov Identifier: NCT00263887.</p

    Inflammation in sputum relates to progression of disease in subjects with COPD: a prospective descriptive study

    Get PDF
    BACKGROUND: Inflammation is considered to be of primary pathogenic importance in COPD but the evidence on which current understanding is based does not distinguish between cause and effect, and no single mechanism can account for the complex pathology. We performed a prospective longitudinal study of subjects with COPD that related markers of sputum inflammation at baseline to subsequent disease progression. METHODS: A cohort of 56 patients with chronic bronchitis was characterized in the stable state at baseline and after an interval of four years, using physiological measures and CT densitometry. Sputum markers of airway inflammation were quantified at baseline from spontaneously produced sputum in a sub-group (n = 38), and inflammation severity was related to subsequent disease progression. RESULTS: Physiological and CT measures indicated disease progression in the whole group. In the sub-group, sputum myeloperoxidase correlated with decline in FEV(1 )(rs = -0.344, p = 0.019, n = 37). LTB4 and albumin leakage correlated with TLCO decline (rs = -0.310, p = 0.033, rs = -0.401, p = 0.008, respectively, n = 35) and IL-8 correlated with progression of lung densitometric indices (rs = -0.464, p = 0.005, n = 38). CONCLUSION: The data support a principal causative role for neutrophilic inflammation in the pathogenesis of COPD and suggest that the measurement of sputum inflammatory markers may have a predictive role in clinical practice

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Mitochondrial DNA Haplogroup Analysis Reveals no Association between the Common Genetic Lineages and Prostate Cancer in the Korean Population

    Get PDF
    Mitochondrial DNA (mtDNA) variation has recently been suggested to have an association with various cancers, including prostate cancer risk, in human populations. Since mtDNA is haploid and lacks recombination, specific mutations in the mtDNA genome associated with human diseases arise and remain in particular genetic backgrounds referred to as haplogroups. To assess the possible contribution of mtDNA haplogroup-specific mutations to the occurrence of prostate cancer, we have therefore performed a population-based study of a prostate cancer cases and corresponding controls from the Korean population. No statistically significant difference in the distribution of mtDNA haplogroup frequencies was observed between the case and control groups of Koreans. Thus, our data imply that specific mtDNA mutations/lineages did not appear to have a significant effect on a predisposition to prostate cancer in the Korean population, although larger sample sizes are necessary to validate our results

    Influence of emphysema distribution on pulmonary function parameters in COPD patients

    Get PDF
    Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients

    The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic variation may underlie phenotypic variation in chronic obstructive pulmonary disease (COPD) in subjects with and without alpha 1 antitrypsin deficiency (AATD). Genotype specific sub-phenotypes are likely and may underlie the poor replication of previous genetic studies. This study investigated subjects with AATD to determine the relationship between specific phenotypes and <it>TNFα </it>polymorphisms.</p> <p>Methods</p> <p>424 unrelated subjects of the PiZZ genotype were assessed for history of chronic bronchitis, impairment of lung function and radiological presence of emphysema and bronchiectasis. A subset of subjects with 3 years consecutive lung function data was assessed for decline of lung function. Four single nucleotide polymorphisms (SNPs) tagging <it>TNFα </it>were genotyped using TaqMan<sup>® </sup>genotyping technologies and compared between subjects affected by each phenotype and those unaffected. Plasma TNFα levels were measured in all PiZZ subjects.</p> <p>Results</p> <p>All SNPs were in Hardy-Weinberg equilibrium. A significant difference in rs361525 genotype (p = 0.01) and allele (p = 0.01) frequency was seen between subjects with and without chronic bronchitis, independent of the presence of other phenotypes. TNFα plasma level showed no phenotypic or genotypic associations.</p> <p>Conclusion</p> <p>Variation in <it>TNFα </it>is associated with chronic bronchitis in AATD.</p

    Linking Microscopic Spatial Patterns of Tissue Destruction in Emphysema to Macroscopic Decline in Stiffness Using a 3D Computational Model

    Get PDF
    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process
    corecore