218 research outputs found

    On the static Lovelock black holes

    Full text link
    We consider static spherically symmetric Lovelock black holes and generalize the dimensionally continued black holes in such a way that they asymptotically for large r go over to the d-dimensional Schwarzschild black hole in dS/AdS spacetime. This means that the master algebraic polynomial is not degenerate but instead its derivative is degenerate. This family of solutions contains an interesting class of pure Lovelock black holes which are the Nth order Lovelock {\Lambda}-vacuum solu- tions having the remarkable property that their thermodynamical parameters have the universal character in terms of the event horizon radius. This is in fact a characterizing property of pure Lovelock theories. We also demonstrate the universality of the asymptotic Einstein limit for the Lovelock black holes in general.Comment: 19 page

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Spin-2 spectrum of defect theories

    Get PDF
    We study spin-2 excitations in the background of the recently-discovered type-IIB solutions of D'Hoker et al. These are holographically-dual to defect conformal field theories, and they are also of interest in the context of the Karch-Randall proposal for a string-theory embedding of localized gravity. We first generalize an argument by Csaki et al to show that for any solution with four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2 excitations obey the massless scalar wave equation in ten dimensions. For the interface solutions at hand this reduces to a Laplace-Beltrami equation on a Riemann surface with disk topology, and in the simplest case of the supersymmetric Janus solution it further reduces to an ordinary differential equation known as Heun's equation. We solve this equation numerically, and exhibit the spectrum as a function of the dilaton-jump parameter Δϕ\Delta\phi. In the limit of large Δϕ\Delta\phi a nearly-flat linear-dilaton dimension grows large, and the Janus geometry becomes effectively five-dimensional. We also discuss the difficulties of localizing four-dimensional gravity in the more general backgrounds with NS5-brane or D5-brane charge, which will be analyzed in detail in a companion paper.Comment: 41 pages, 6 figure

    Comments on Holographic Entanglement Entropy and RG Flows

    Full text link
    Using holographic entanglement entropy for strip geometry, we construct a candidate for a c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a 'phase transition' as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.Comment: References adde

    Holographic GB gravity in arbitrary dimensions

    Full text link
    We study the properties of the holographic CFT dual to Gauss-Bonnet gravity in general D5D \ge 5 dimensions. We establish the AdS/CFT dictionary and in particular relate the couplings of the gravitational theory to the universal couplings arising in correlators of the stress tensor of the dual CFT. This allows us to examine constraints on the gravitational couplings by demanding consistency of the CFT. In particular, one can demand positive energy fluxes in scattering processes or the causal propagation of fluctuations. We also examine the holographic hydrodynamics, commenting on the shear viscosity as well as the relaxation time. The latter allows us to consider causality constraints arising from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection 3.3 and new appendix B on conformal tensor fields. Added comments on the relation between the central charge appearing in the two-point function and the "central charge" characterizing the entropy density in the discussion. References adde

    Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Get PDF
    BACKGROUND: Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR)-based assays and enzyme-linked immunosorbent assays (ELISA) are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS) method was applied to detect HBV and HCV antibodies rapidly and simultaneously. METHODS: Chemically modified glass slides were used as solid supports (named chip), on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens) were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA) was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. RESULTS: We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05) existed between the results determined by our assay and ELISA respectively. CONCLUSION: Results showed that our assay can be applied with serology for the detection of HBV and HCV antibodies rapidly and simultaneously in clinical detection

    Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles

    Get PDF
    Nanometre-sized objects with highly symmetrical, cage-like polyhedral shapes, often with icosahedral symmetry, have recently been assembled from DNA(1-3), RNA(4) or proteins(5,6) for applications in biology and medicine. These achievements relied on advances in the development of programmable self-assembling biological materials(7-10), and on rapidly developing techniques for generating three-dimensional (3D) reconstructions from cryo-electron microscopy images of single particles, which provide high-resolution structural characterization of biological complexes(11-13). Such single-particle 3D reconstruction approaches have not yet been successfully applied to the identification of synthetic inorganic nanomaterials with highly symmetrical cage-like shapes. Here, however, using a combination of cryo-electron microscopy and single-particle 3D reconstruction, we suggest the existence of isolated ultrasmall (less than 10 nm) silica cages ('silicages') with dodecahedral structure. We propose that such highly symmetrical, self-assembled cages form through the arrangement of primary silica clusters in aqueous solutions on the surface of oppositely charged surfactant micelles. This discovery paves the way for nanoscale cages made from silica and other inorganic materials to be used as building blocks for a wide range of advanced functional-materials applications

    Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interleukin-1 (IL-1) family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra) increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects.</p> <p>Methods</p> <p>Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional) Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1β gene (<it>IL-1B</it>) at -511 and +3954 positions, and a variable number tandem repeats (VNTR) in intron 2 of the IL-1ra gene (<it>IL-1RN</it>) were assessed.</p> <p>Results</p> <p>We found a 2-fold higher frequency of the <it>IL-1RN </it>1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%), and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%). Frequency of the <it>IL-1RN </it>2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 <it>IL-1B </it>polymorphisms. However, the haplotype (-511)C-(+3954)T-(VNTR)2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87). Interestingly, the <it>IL-1RN </it>1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%).</p> <p>Conclusions</p> <p>Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR <it>IL-1RN </it>polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR <it>IL-1RN </it>polymorphism is implicated in several disease conditions, athlete status may constitute a confounding variable that will need to be accounted for when examining associations of this polymorphism with disease risk.</p
    corecore