2,171 research outputs found

    Attributes Enhanced Role-Based Access Control Model

    Get PDF
    Abstract. Attribute-based access control (ABAC) and role-based access control (RBAC) are currently the two most popular access con-trol models. Yet, they both have known limitations and offer features complimentary to each other. Due to this fact, integration of RBAC and ABAC has recently emerged as an important area of research. In this paper, we propose an access control model that combines the two mod-els in a novel way in order to unify their benefits. Our approach provides a fine-grained access control mechanism that not only takes contextual information into account while making the access control decisions but is also suitable for applications where access to resources is controlled by exploiting contents of the resources in the policy

    Common variants in FOXP1 are associated with generalized vitiligo

    Get PDF
    In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)

    Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia

    Get PDF
    Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia communications in the dorsal horn remain to be fully elucidated. A recent study has demonstrated that platelet-derived growth factor (PDGF) expressed in dorsal horn neurons contributes to neuropathic pain after nerve injury, yet how PDGF produces pain hypersensitivity remains unknown. Here we report an involvement of spinal microglia in PDGF-induced tactile allodynia. A single intrathecal delivery of PDGF B-chain homodimer (PDGF-BB) to naive rats produced a robust and long-lasting decrease in paw withdrawal threshold in a dose-dependent manner. Following PDGF administration, the immunofluorescence for phosphorylated PDGF β-receptor (p-PDGFRβ), an activated form, was markedly increased in the spinal dorsal horn. Interestingly, almost all p-PDGFRβ-positive cells were double-labeled with an antibody for the microglia marker OX-42, but not with antibodies for other markers of neurons, astrocytes and oligodendrocytes. PDGF-stimulated microglia in vivo transformed into a modest activated state in terms of their cell number and morphology. Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover, in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the immunofluorescence for p-PDGFRβ was markedly enhanced exclusively in microglia in the ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a role in the pathogenesis of neuropathic pain

    Estrogen Receptor Genotypes, Menopausal Status, and the Lipid Effects of Tamoxifen

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109885/1/cpt6100343.pd

    Inorganic Arsenite Potentiates Vasoconstriction through Calcium Sensitization in Vascular Smooth Muscle

    Get PDF
    Chronic exposure to arsenic is well known as the cause of cardiovascular diseases such as hypertension. To investigate the effect of arsenic on blood vessels, we examined whether arsenic affected the contraction of aortic rings in an isolated organ bath system. Treatment with arsenite, a trivalent inorganic species, increased vasoconstriction induced by phenylephrine or serotonin in a concentration-dependent manner. Among the arsenic species tested—arsenite, pentavalent inorganic species (arsenate), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V))—arsenite was the most potent. Similar effects were also observed in aortic rings without endothelium, suggesting that vascular smooth muscle plays a key role in enhancing vasoconstriction induced by arsenite. This hypercontraction by arsenite was well correlated with the extent of myosin light chain (MLC) phosphorylation stimulated by phenylephrine. Direct Ca(2+) measurement using fura-2 dye in aortic strips revealed that arsenite enhanced vasoconstriction induced by high K(+) without concomitant increase in intracellular Ca(2+) elevation, suggesting that, rather than direct Ca(2+) elevation, Ca(2+) sensitization may be a major contributor to the enhanced vasoconstriction by arsenite. Consistent with these in vitro results, 2-hr pretreatment of 1.0 mg/kg intravenous arsenite augmented phenylephrine-induced blood pressure increase in conscious rats. All these results suggest that arsenite increases agonist-induced vasoconstriction mediated by MLC phosphorylation in smooth muscles and that calcium sensitization is one of the key mechanisms for the hypercontraction induced by arsenite in blood vessels

    A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit

    Full text link
    We propose a multilevel Monte Carlo method for a particle-based asymptotic-preserving scheme for kinetic equations. Kinetic equations model transport and collision of particles in a position-velocity phase-space. With a diffusive scaling, the kinetic equation converges to an advection-diffusion equation in the limit of zero mean free path. Classical particle-based techniques suffer from a strict time-step restriction to maintain stability in this limit. Asymptotic-preserving schemes provide a solution to this time step restriction, but introduce a first-order error in the time step size. We demonstrate how the multilevel Monte Carlo method can be used as a bias reduction technique to perform accurate simulations in the diffusive regime, while leveraging the reduced simulation cost given by the asymptotic-preserving scheme. We describe how to achieve the necessary correlation between simulation paths at different levels and demonstrate the potential of the approach via numerical experiments.Comment: 20 pages, 7 figures, published in Monte Carlo and Quasi-Monte Carlo Methods 2018, correction of minor typographical error

    Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Get PDF
    Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC.</p> <p>Methods</p> <p>A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS.</p> <p>Results</p> <p>No CRC "specific" classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy.</p> <p>Conclusion</p> <p>In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment.</p
    corecore