587 research outputs found

    Prediction of blast loading in an internal environment using artificial neural networks

    Get PDF
    Explosive loading in a confined internal environment is highly complex and is driven by nonlinear physical processes associated with reflection and coalescence of multiple shock fronts. Prediction of this loading is not currently feasible using simple tools, and instead specialist computational software or practical testing is required, which are impractical for situations with a wide range of input variables. There is a need to develop a tool which balances the accuracy of experiments or physics-based numerical schemes with the simplicity and low computational cost of an engineering-level predictive approach. Artificial neural networks (ANNs) are formed of a collection of neurons that process information via a series of connections. When fully trained, ANNs are capable of replicating and generalising multi-parameter, high-complexity problems and are able to generate new predictions for unseen problems (within the bounds of the training variables). This article presents the development and rigorous testing of an ANN to predict blast loading in a confined internal environment. The ANN was trained using validated numerical modelling data, and key parameters relating to formulation of the training data and network structure were critically analysed in order to maximise the predictive capability of the network. The developed network was generally able to predict specific impulses to within 10% of the numerical data: 90% of specific impulses in the unseen testing data, and between 81% and 87% of specific impulses for data from four additional unseen test models, were predicted to this accuracy. The network was highly capable of generalising in areas adjacent to reflecting surfaces and as those close to ambient outflow boundaries. It is shown that ANNs are highly suited to modelling blast loading in a confined internal environment, with significant improvements in accuracy achievable if a robust, well distributed training dataset is used with a network structure that is tailored to the problem being solved

    Review: The Newsletter and Journal of Dramaturgy, volume 18, issue 2

    Get PDF
    Contents include: Reconsidering Borders; Rebekka Kricheldorf\u27s The Ballad of the Pine Tree Killer: A generational battleground; Goethe-Institut Theater; What people in the community are saying about the Goethe-Institut; A Fundamental Resistance, An Interview with Neil Blackadder; The Greening of American Theatre, A Two-Part Special Feature; The Green Top Ten, Ten Ways Your Theatre Can Go Green; A Member of the Ensemble, The Devised Production of In the Belly of the Beast with Two Backs. Issue editors: D.J. Hopkins, Shelley Orrhttps://soundideas.pugetsound.edu/lmdareview/1037/thumbnail.jp

    Optimal point of insertion of the needle in neuraxial blockade using a midline approach: Study in a geometrical model

    Get PDF
    Performance of neuraxial blockade using a midline approach can be technically difficult. It is therefore important to optimize factors that are under the influence of the clinician performing the procedure. One of these factors might be the chosen point of insertion of the needle. Surprisingly few data exist on where between the tips of two adjacent spinous processes the needle should be introduced. A geometrical model was adopted to gain more insight into this issue. Spinous processes were represented by parallelograms. The length, the steepness relative to the skin, and the distance between the parallelograms were varied. The influence of the chosen point of insertion of the needle on the range of angles at which the epidural and subarachnoid space could be reached was studied. The optimal point of insertion was defined as the point where this range is the widest. The geometrical model clearly demonstrated, that the range of angles at which the epidural or subarachnoid space can be reached, is dependent on the point of insertion between the tips of the adjacent spinous processes. The steeper the spinous processes run, the more cranial the point of insertion should be. Assuming that the model is representative for patients, the performance of neuraxial blockade using a midline approach might be improved by choosing the optimal point of insertion

    The effect of different combinations of vascular, dependency and cognitive endpoints on the sample size required to detect a treatment effect in trials of treatments to improve outcome after lacunar and non-lacunar ischaemic stroke

    Get PDF
    Background Endpoints that are commonly used in trials of moderate/severe stroke may be less frequent in patients with minor, non-disabling stroke thus inflating sample sizes. We tested whether trial efficiency might be improved with composite endpoints. Methods We prospectively recruited patients with lacunar and minor non-lacunar ischaemic stroke (NIHSS ≤ 7) and assessed recurrent vascular events (stroke, transient ischaemic attack (TIA), ischemic heart disease (IHD)), modified Rankin Score (mRS) and cognitive testing with the Addenbrooke’s Cognitive Examination (ACE-R) one year post-stroke. For a potential secondary prevention randomised controlled trial (RCT), we estimated sample sizes using individual or combined outcomes, at power 80% (and 90%), alpha 5%, required to detect a relative 10% risk reduction. Results Amongst 264 patients (118 lacunar, 146 non-lacunar), at one year, 30/264 (11%) patients had a recurrent vascular event, 5 (2%) had died, 3 (1%) had clinically-diagnosed dementia, 53/264 (20%) had mRS ≥ 3 and 29/158 (19%) had ACE-R ≤ 82 (57 could not attend for cognitive testing). For a potential trial, at 80% power, using mRS ≥ 3 alone would require n > 5000 participants, recurrent vascular events alone n = 9908 participants, and a composite of any recurrent vascular event, ACE-R ≤ 82, dementia or mRS ≥ 2 (present in 56% of patients) n = 2224 patients. However, including cognition increased missing data. Results were similar for lacunar and non-lacunar minor ischaemic stroke. Conclusions Composite outcomes including vascular events, dependency, and cognition reduce sample size and increase efficiency, feasibility, and relevance to patients of RCTs in minor ischaemic stroke. Efficiency might be improved further with more practical cognitive test strategies

    A branching algorithm to reduce computational time of batch models: application for blast analyses

    Get PDF
    Numerical analysis is increasingly used for batch modelling runs, with each individual model possessing a unique combination of input parameters sampled from a range of potential values. Whilst such an approach can help to develop a comprehensive understanding of the inherent unpredictability and variability of explosive events, or populate training/validation data sets for machine learning approaches, the associated computational expense is relatively high. Furthermore, any given model may share a number of common solution steps with other models in the batch, and simulating all models from birth to termination may result in large amounts of repetition. This paper presents a new branching algorithm that ensures calculation steps are only computed once by identifying when the parameter fields of each model in the batch becomes unique. This enables informed data mapping to take place, leading to a reduction in the required computation time. The branching algorithm is explained using a conceptual walk-through for a batch of 9 models, featuring a blast load acting on a structural panel in 2D. By eliminating repeat steps, approximately 50% of the run time can be saved. This is followed by the development and use of the algorithm in 3D for a practical application involving 20 complex containment structure models. In this instance, a ∼20% reduction in computational costs is achieved

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    White matter hyperintensity reduction and outcomes after minor stroke

    Get PDF
    Objective: To assess factors associated with white matter hyperintensity (WMH) change in a large cohort after observing obvious WMH shrinkage 1 year after minor stroke in several participants in a longitudinal study. Methods: We recruited participants with minor ischemic stroke and performed clinical assessments and brain MRI. At 1 year, we assessed recurrent cerebrovascular events and dependency and repeated the MRI. We assessed change in WMH volume from baseline to 1 year (normalized to percent intracranial volume [ICV]) and associations with baseline variables, clinical outcomes, and imaging parameters using multivariable analysis of covariance, model of changes, and multinomial logistic regression. Results: Among 190 participants (mean age 65.3 years, range 34.3–96.9 years, 112 [59%] male), WMH decreased in 71 participants by 1 year. At baseline, participants whose WMH decreased had similar WMH volumes but higher blood pressure (p = 0.0064) compared with participants whose WMH increased. At 1 year, participants with WMH decrease (expressed as percent ICV) had larger reductions in blood pressure (β = 0.0053, 95% confidence interval [CI] 0.00099–0.0097 fewer WMH per 1–mm Hg decrease, p = 0.017) and in mean diffusivity in normal-appearing white matter (β = 0.075, 95% CI 0.0025–0.15 fewer WMH per 1-unit mean diffusivity decrease, p = 0.043) than participants with WMH increase; those with WMH increase experienced more recurrent cerebrovascular events (32%, vs 16% with WMH decrease, β = 0.27, 95% CI 0.047–0.50 more WMH per event, p = 0.018). Conclusions: Some WMH may regress after minor stroke, with potentially better clinical and brain tissue outcomes. The role of risk factor control requires verification. Interstitial fluid alterations may account for some WMH reversibility, offering potential intervention targets

    Small vessel disease and dietary salt intake: cross sectional study and systematic review

    Get PDF
    Background: Higher dietary salt intake increases the risk of stroke and may increase white matter hyperintensity (WMH) volume. We hypothesized that a long-term higher salt intake may be associated with other features of small vessel disease (SVD). Methods: We recruited consecutive patients with mild stroke presenting to the Lothian regional stroke service. We performed brain magnetic resonance imaging, obtained a basic dietary salt history, and measured the urinary sodium/creatinine ratio. We also carried out a systematic review to put the study in the context of other studies in the field. Results: We recruited 250 patients, 112 with lacunar stroke and 138 with cortical stroke, with a median age of 67.5 years. After adjustment for risk factors, including age and hypertension, patients who had not reduced their salt intake in the long term were more likely to have lacunar stroke (odds ratio [OR], 1.90; 95% confidence interval [CI], 1.10-3.29), lacune(s) (OR, 2.06; 95% CI, 1.09-3.99), microbleed(s) (OR, 3.4; 95% CI, 1.54, 8.21), severe WMHs (OR, 2.45; 95% CI 1.34-4.57), and worse SVD scores (OR, 2.17; 95% CI, 1.22-3.9). There was limited association between SVD and current salt intake or urinary sodium/creatinine ratio. Our systematic review found no previously published studies of dietary salt and SVD. Conclusion: The association between dietary salt and background SVD is a promising indication of a potential neglected contributory factor for SVD. These results should be replicated in larger, long-term studies using the recognized gold-standard measures of dietary sodium

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
    corecore