311 research outputs found
Transit Node Routing Reconsidered
Transit Node Routing (TNR) is a fast and exact distance oracle for road
networks. We show several new results for TNR. First, we give a surprisingly
simple implementation fully based on Contraction Hierarchies that speeds up
preprocessing by an order of magnitude approaching the time for just finding a
CH (which alone has two orders of magnitude larger query time). We also develop
a very effective purely graph theoretical locality filter without any
compromise in query times. Finally, we show that a specialization to the online
many-to-one (or one-to-many) shortest path further speeds up query time by an
order of magnitude. This variant even has better query time than the fastest
known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201
Dynamic Arc-Flags in Road Networks
International audienceIn this work we introduce a new data structure, named Road-Signs, which allows us to efficiently update the Arc-Flags of a graph in a dynamic scenario. Road-Signs can be used to compute Arc-Flags, can be efficiently updated and do not require large space consumption for many real-world graphs like, e.g., graphs arising from road networks. In detail, we define an algorithm to preprocess Road-Signs and an algorithm to update them each time that a weight increase operation occurs on an edge of the network. We also experimentally analyze the proposed algorithms in real-world road networks showing that they yields a significant speed-up in the updating phase of Arc-Flags, at the cost of a very small space and time overhead in the preprocessing phase
Fully Dynamic Maintenance of Arc-Flags in Road Networks
International audienceThe problem of finding best routes in road networks can be solved by applying Dijkstra's shortest paths algorithm. Unfortunately, road networks deriving from real-world applications are huge yielding unsustainable times to compute shortest paths. For this reason, great research efforts have been done to accelerate Dijkstra's algorithm on road networks. These efforts have led to the development of a number of speed-up techniques, as for example Arc-Flags, whose aim is to compute additional data in a preprocessing phase in order to accelerate the shortest paths queries in an on-line phase. The main drawback of most of these techniques is that they do not work well in dynamic scenarios. In this paper we propose a new algorithm to update the Arc-Flags of a graph subject to edge weight decrease operations. To check the practical performances of the new algorithm we experimentally analyze it, along with a previously known algorithm for edge weight increase operations, on real-world road networks subject to fully dynamic sequences of operations. Our experiments show a significant speed-up in the updating phase of the Arc-Flags, at the cost of a small space and time overhead in the preprocessing phase
Arc-Flags in Dynamic Graphs
Computation of quickest paths has undergoing a rapid development in recent
years. It turns out that many high-performance route planning algorithms are
made up of several basic ingredients. However, not all of those ingredients have
been analyzed in a emph{dynamic} scenario where edge weights change after
preprocessing. In this work, we present how one of those ingredients, i.e.,
Arc-Flags can be applied in dynamic scenario
Trip-Based Public Transit Routing
We study the problem of computing all Pareto-optimal journeys in a public
transit network regarding the two criteria of arrival time and number of
transfers taken. We take a novel approach, focusing on trips and transfers
between them, allowing fine-grained modeling. Our experiments on the
metropolitan network of London show that the algorithm computes full 24-hour
profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in
dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA
201
Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia.
Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern
Distance Oracles for Time-Dependent Networks
We present the first approximate distance oracle for sparse directed networks
with time-dependent arc-travel-times determined by continuous, piecewise
linear, positive functions possessing the FIFO property.
Our approach precomputes approximate distance summaries from
selected landmark vertices to all other vertices in the network. Our oracle
uses subquadratic space and time preprocessing, and provides two sublinear-time
query algorithms that deliver constant and approximate
shortest-travel-times, respectively, for arbitrary origin-destination pairs in
the network, for any constant . Our oracle is based only on
the sparsity of the network, along with two quite natural assumptions about
travel-time functions which allow the smooth transition towards asymmetric and
time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of
EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An
extended abstract also appeared in the 41st International Colloquium on
Automata, Languages, and Programming (ICALP 2014, track-A
Tractable Pathfinding for the Stochastic On-Time Arrival Problem
We present a new and more efficient technique for computing the route that
maximizes the probability of on-time arrival in stochastic networks, also known
as the path-based stochastic on-time arrival (SOTA) problem. Our primary
contribution is a pathfinding algorithm that uses the solution to the
policy-based SOTA problem---which is of pseudo-polynomial-time complexity in
the time budget of the journey---as a search heuristic for the optimal path. In
particular, we show that this heuristic can be exceptionally efficient in
practice, effectively making it possible to solve the path-based SOTA problem
as quickly as the policy-based SOTA problem. Our secondary contribution is the
extension of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and preprocessing
algorithms, we evaluate their performance on two different real-world networks.
To the best of our knowledge, these techniques provide the most efficient
computation strategy for the path-based SOTA problem for general probability
distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental
Algorithms 2016 and published by Springer in the Lecture Notes in Computer
Science series on June 1, 2016. Includes typographical corrections and
modifications to pre-processing made after the initial submission to SODA'15
(July 7, 2014
Advanced Multilevel Node Separator Algorithms
A node separator of a graph is a subset S of the nodes such that removing S
and its incident edges divides the graph into two disconnected components of
about equal size. In this work, we introduce novel algorithms to find small
node separators in large graphs. With focus on solution quality, we introduce
novel flow-based local search algorithms which are integrated in a multilevel
framework. In addition, we transfer techniques successfully used in the graph
partitioning field. This includes the usage of edge ratings tailored to our
problem to guide the graph coarsening algorithm as well as highly localized
local search and iterated multilevel cycles to improve solution quality even
further. Experiments indicate that flow-based local search algorithms on its
own in a multilevel framework are already highly competitive in terms of
separator quality. Adding additional local search algorithms further improves
solution quality. Our strongest configuration almost always outperforms
competing systems while on average computing 10% and 62% smaller separators
than Metis and Scotch, respectively
- …