
Arc-Flags in Dynamic Graphs⋆

Emanuele Berrettini1, Gianlorenzo D’Angelo1, and Daniel Delling2

1 Department of Electrical and Information Engineering, University of L’Aquila,
Italy. surreale@gmail.com gianlorenzo.dangelo@univaq.it

2 Faculty of Informatics, Universität Karlsruhe (TH),
delling@informatik.uni-karlsruhe.de

Abstract. Computation of quickest paths has undergoing a rapid devel-
opment in recent years. It turns out that many high-performance route
planning algorithms are made up of several basic ingredients. However,
not all of those ingredients have been analyzed in a dynamic scenario
where edge weights change after preprocessing. In this work, we present
how one of those ingredients, i.e., Arc-Flags can be applied in dynamic
scenarios.

Keywords: Shortest Path, Speed-Up Technique, Dynamic Graph Al-
gorithm

1 Introduction

Finding best connections in transportation networks is a problem familiar
to everybody who ever travelled. In general, Dijkstra’s algorithm can find
the quickest path between two points s and t if a proper model is applied.
For transportation networks, this can be achieved by assigning travel
times to the edges of the graph representing the transportation network.
Unfortunately, transportation networks deriving from real-world appli-
cations tend to be huge yielding query times of several seconds. Hence,
over the last decade, research focused on accelerating Dijkstra’s algorithm
on typical instances, e.g., road or railway networks (cf. [3] for a recent
overview). Such so called speed-up techniques compute additional data
during a preprocessing phase in order to accelerate the queries during the
online phase. As we observed in [1], most of recent high-performance rely
on basic ingredients.

Unfortunately, not all of those ingredients are proven to work in dy-
namic scenarios, i.e., edge weights change due to traffic jams or delays
of trains. In other words, correctness of the techniques relies on the fact

⋆ Work partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009
9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2149

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that the graph does not change between two queries. Unfortunately, such
situations arise frequently in practice. In this work, we show how to use
one of those ingredients, called Arc-Flags, in such scenarios.

Related Work. As already mentioned, a lot of speed-up techniques have
been introduced over the last years. Due to space limitations, we direct
the interested reader to [3], which gives a recent overview on static route
planning algorithms. For the rest of related work, we focus on published
results on dynamic speed-up techniques.

Geometric containers [15], which can be interpreted as a predecessor
of Arc-Flags, also attach a label to each edge that represents all nodes
to which a shortest path starts with this particular edge. A dynamiza-
tion has been published in [16] yielding suboptimal containers if edge
weights decrease. In [13], ideas from highway hierarchies [12] and over-
lay graphs [14] are combined yielding very good query times in dynamic
road networks. Moreover, the ALT algorithm, introduced in [8] works
considerably well in dynamic scenarios as well [4]. A combination of ALT
with contraction, called Core-ALT, even works in time-dependent dy-
namic road networks [2]. However, to the best of our knowledge, there
are no published results on Arc-Flags in dynamic scenarios.

Our Contribution. In this paper, we propose a first approach to cope with
Arc-Flags in dynamic graphs. In particular, we propose an algorithm that
is able to update Arc-Flags in graphs subject to weight increase opera-
tions. Each time that a weight increasing occurs, the algorithm is able
to efficiently update all relevant Arc-Flags without recomputation from
scratch. In comparison to a from-scratch approach, our algorithm yields a
faster update of the arc-flags for the price of a loss in query performance.
However, our experimental evalutions (on real world road networks) shows
that the decrease in query performance is minor compared to the speed-up
gained in the update phase.

The methods developed here are related to [16] since Geometric Con-
tainers can be interpreted as predecessor of Arc-Flags. Like for Arc-Flags,
preprocessing of Geoemtric Containers is time-consuming. Hence, in [16],
the authors present methods how to update the containers in case of
weight changes without recomputating all containers from scratch. Like
the methods presented here, the main idea is to settle for suboptimal
containers in case of delays. By this, query performance decreases after
a certain number of updates. However, it turns out that this decrease is
acceptable as long as the number of updates stays little.

Outline. In Section 2 we introduce the notation used in the paper; in
Section 3 we present the dynamic algorithm for updating Arc-Flags; in
Section 4 we experimentally analyze the performances of the algorithm;
and in Section 5 we outline the conclusion of the paper.

2 Preliminaries

In this paper, a road network is modeled by directed weighted graphs G =
(V, E, w), where nodes in V represent road crossings, edges in E represent
road segments between two crossings and the weight function w : E →
R

+ represents an estimate of the travel time needed for traversing road
segments.

A minimal travel time route between two crossings S and T in a road
network corresponds to a shortest path from the node s representing S and
the node t representing T . The total weight of a shortest path between
nodes s and t is called distance from s to t and it is denoted as d(s, t).

A partition of the node set V is a family R = {R1, R2, . . . , Rr} of
subsets of V , such that each node v ∈ V is contained in exactly one set
Rk ∈ R. An element of a partition is called a region. Given a node v in
a region Rk, v is a boundary node of region Rk if there exists an edge
(u, v) ∈ E or (v, u) ∈ E such that u 6∈ Rk. The set of boundary nodes of
a region Rk is denoted as B(Rk)

Given a graph G, the reverse graph Ḡ = (V, Ē) of G is the graph
where Ē = {(v, u) | (u, v) ∈ E}.

Bidirectional Dijkstra’s Algorithm for Shortest Paths. Minimal routes in
road networks can be computed by shortest paths algorithm such as Dijk-

stra’s algorithm [6]. In order to perform an s-t query, the algorithm grows
a shortest path tree starting from the source node s and greedily visiting
the graph. The algorithm stops as soon as it visits the target node t.
A simple variation of Dijkstra’s algorithm is the bidirectional Dijkstra’s

algorithm which grows two shortest path trees starting from both nodes
s and t. In detail, the algorithm starts a visit of G starting from s and a
visit of the reverse graph Ḡ starting from t. The algorithm stops as soon
the two visits meet at some node in the graph.

Static Arc-Flags. The classic Arc-Flags approach, introduced in [10, 11],
divides the computation of shortest paths into two phases: a preprocessing
phase which is performed off-line and a query phase which is performed
on-line. The aim of the preprocessing phase is to compute in advance

some information about shortest paths. This information is used to speed
up the shortest path computation which is performed in the query phase.

The preprocessing phase first computes a partition R =
{R1, R2, . . . , Rr} of V and then associates a label to each edge e in E.
A label contains, for each region Rk ∈ R, a flag Ak(e) which is true if
and only if a shortest path in G towards a node in Rk starts with e.
The set of flags of an edge e is called Arc-Flags label of e. Furthermore,
the preprocessing phase associates (backward) Arc-Flags labels to edges
in the reverse graph Ḡ. The query phase consists in a modified version
of bidirectional Dijkstra’s algorithm: the forward search only considers
those edges for which the flag of the target node’s region is true, while
the backward search only follows those edges that have a set flag for the
source node’s region.

The main advantage of Arc-Flags is its easy query algorithm combined
with an excellent query performance. However, preprocessing is very time-
consuming. This is due to the fact that the preprocessing phase grows a
full shortest path tree from all boundary nodes of each region yielding
preprocessing times of several weeks for instances like the Western Eu-
ropean road network. This results in practical inapplicability in dynamic
scenarios where, in order to keep correctness of queries, the preprocessing
phase has to be performed after each edge weight modification. Note that
by investing much more memory consumption during preprocessing, the
preprocessing time can be decreased to approximately one day [9]. Due
to the high memory consumption, we settle for the boundary approach in
this work. Still, all insights gained here can also applied to the centralized
approach due to [9].

3 Dynamic Algorithm

In this section, we present an algorithm which is able to update the Arc-
Flags of a graph G in order to correctly answer to shortest path queries
when weight-increase operations occur on G.

The goal is to update arc labels without recomputation from scratch.
Arc-Flags are set considering all shortest path trees rooted at each bound-
ary node, hence a possible approach is to maintain shortest path trees for
all the boundary nodes of the graph by using the dynamic algorithm in [7].
Given the huge number of boundary nodes in large graphs, this approach
is impractical due to its memory overhead and time complexity. However,
this method would guarantee optimal query performance (compared to a

full recomputation) since it maintains exact shortest paths and changes
flags only where needed.

Our goal is to update Arc-Flags without storing too much additional
data. Therefore, we accept a small efficiency loss in the query phase.
The main idea is to define a threshold for each edge of the graph and
compare it with the edge weight increase when it occurs. In this way, we
can determine whether an edge becomes the starting edge of a shortest
path to some boundary nodes after a weight-increase operation. However,
we cannot determine whether an edge belonging to a shortest path before
a weight-increase operation is still on a shortest path after the operation.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios without
maintaining shortest path trees. On the other hand, we keep unnecessarily
true flags which leads to an efficiency loss in the query phase.

In the remainder of the section, we consider only Arc-Flags on graph
the G as the inferred properties do not change for the reverse graph Ḡ.
In the next section, the following results will be used on both G and Ḡ.

Given a weighted graph G = (V, E, w), and a partition R =
{R1, R2, . . . , Rr} of V , let us suppose that G is subject to a set of weight-
increase operations C = (c1, c2, . . . , cc). Let us denote as Gi = (V, E, wi)
the graph obtained after i weight increase operations, 0 ≤ i ≤ c, G0 ≡ G.
Each operation ci increases the weight of one edge ei in E of an amount
γi > 0, i.e. wi(ei) = wi−1(ei) + γi and wi(e) = wi−1(e), for each edge
e 6= ei in E.

Given an edge e = (u, v) and a region Rk, the minimum threshold

δk,i(e) of e in Gi with respect to Rk is defined as wi(u, v) plus the minimum
difference between the distance from v to b and the distance from u to be
b among all boundary nodes b of Rk, formally,

δk,i(e) = min {wi(u, v) + di(v, b) − di(u, b) | b ∈ B(Rk)} .

In other words, δk,i(e) is the minimum weight increase which has to occur
to edge ei in order to make e lie on a shortest path towards region Rk.

Note that, for 0 ≤ i ≤ c, for each region Rk, and for each edge e,
δk,i(e) ≥ 0. In fact, if by contradiction we suppose that δk,i(e) < 0, then
it follows that for a boundary node b of Rk, wi(u, v) + di(v, b) < di(u, b),
which contradicts the minimality of di(u, b). Moreover δk,0(e) = 0 if and
only if Ak(e) = TRUE. In fact, by definition of Arc-Flags, Ak(e) =
TRUE if and only if w0(e) = d0(u, b′) − d0(v, b′) for some boundary
nodes b′ of Rk. It follows that

δk,0(e) = min {w0(u, v) + d0(v, b) − d0(u, b) | b ∈ B(Rk)} ≤

≤ w0(u, v) + d0(u, b′) − d0(v, b′) = 0.

The following lemma gives us a necessary condition to check whether
the Arc-Flags of an edge needs to be set to TRUE.

Lemma 1. Given a region Rk, then an edge e is on a shortest path to-

wards Rk in Gi only if γi ≥ δk,i−1(e).

Proof. If e = (u, v) is on a shortest path towards Rk already in Gi−1,
then δk,i−1(e) = 0 as di−1(u, b) = wi−1(u, v) + di−1(v, b) for a boundary
node b in Rk. Thus the statement holds. Otherwise, edge e = (u, v) is
on a shortest path towards region Rk in Gi and it is not on a shortest
path towards region Rk in Gi−1, which means that the weight increase
operation occurred on an edge (u, w) outgoing from node u, that is u ≡ ui

and w ≡ vi. In this case, we prove the statement by contradiction, that
is, we show that if γi < δk,i−1(e) then edge e in not on a shortest path
towards Rk in Gi. Let b be the boundary node of Rk such that

δk,i−1(e) = wi−1(u, v) + di−1(v, b) − di−1(u, b),

then γi < δk,i−1(e) implies that

γi < wi−1(u, v) + di−1(v, b) − di−1(u, b).

It follows that

wi−1(u, v) + di−1(v, b) > di−1(u, b) + γi.

The last inequality implies that edge (u, v) is not on a shortest path
towards b. �

Minimum thresholds can be computed in the preprocessing phase,
during the Arc-Flags computation. Hence, the computation of minimum
thresholds does not increase the computational complexity of the pre-
processing. For each region Rk, we store the minimum threshold of an
edge e with respect to Rk in a data structure δk(e) which is updated each
time that an edge weight modification occurs. Hence, storing minimum
thresholds requires O(m · r) instead of O(m · log r) required by Arc-Flags.

When a weight increase operation ci occurs, we update Arc-Flags
and minimum thresholds by using Algorithm UPDATE-ARC-FLAGS

in Figure 1.
In detail, Algorithm UPDATE-ARC-FLAGS performs a breadth-

first search for each region Rk in R. For each visited edge e it checks

Algorithm: UPDATE-ARC-FLAGS1

input : Graph Gi−1, weight increase operation ci, 1 ≤ i ≤ c

output: Arc-Flags A and minimum thresholds δ

foreach region Rk do2

visit Gi−1 by performing a breadth-first search3

foreach visited edge e do4

if Ak(e) == FALSE then5

if γi ≥ δk(e) then6

Ak(e) = TRUE7

δk(e) = 08

else9

δk(e) = δk(e) − γi10

Fig. 1. Algorithm UPDATE-ARC-FLAGS

whether it is not on a shortest path towards region k, that is Ak(e) ==
FALSE (Line 5). In the affirmative case, it applies Lemma 1 by setting
Ak(e) to TRUE and δk(e) to 0 if γi ≥ δk(e) or by updating δk(e) to
δk(e) − γi otherwise (Lines 6–10).

It is easy to see that Algorithm UPDATE-ARC-FLAGS requires
O((n + m) · r) computational time as it performs r times a breadth-first
search of graph Gi−1.

The next theorem shows the correctness of algorithm
UPDATE-ARC-FLAGS and it follows from Lemma 1 and from
the discussion above.

Theorem 1. After weight increase operation ci, for each region Rk and

for each edge e, if e is on a shortest path towards region Rk in Gi then

Ak(e) = TRUE.

4 Experimental study

In this section, we experimentally analyze the algorithm presented.
We first report the computational time of the preprocessing phase
of Arc-Flags in order to compare it with the computational time of
UPDATE-ARC-FLAGS. Then, we present query performances by
comparing query time after the execution of UPDATE-ARC-FLAGS

against the one obtained after the from scratch recomputation. We also
compare the two algorithms by performing mixed sequences of prepro-
cessing and query phases. Finally, we compare our approach with the
traditional use of bidirectional Dijkstra to evaluate the speed-up gained
by our technique.

Our experiments are performed with a Dual-Core AMD opteron Pro-
cessor 2218 clocked at 2.6 GHz with 32 GB of main memory. The program
was compiled with GNU g++ compiler 4.2 under SuSE Linux 10.3 (Ker-
nel 2.6.22.17).

We consider three graphs that represent the Luxembourg, Dutch and
German road networks. In each graph, nodes represent crossings, edges
represent links between two crossings and the weights correspond to an
estimate of the travel times needed to traverse links. Edges are classified
into four categories according to their speed limits: motorways, national
roads, regional roads and urban streets. The main characteristics of the
graphs are reported in Table 1.

graph n. of nodes n. of edges %mot %nat %reg %urb

road network of Luxembourg 30 647 75 576 0.6 1.9 14.8 82.7
road network of Netherlands 892 027 2 278 824 0.4 0.6 5.1 93.9
road network of Germany 4 375 381 10 967 664 0.3 1.5 15.5 82.7

Table 1. Tested road graphs. The first column indicates the graph; the second and
the third columns show the number of nodes and edges in the graph, respectively; the
last four columns show the percentage distribution of edges into categories: motorways
(mot), national roads (nat), regional roads (reg), and urban streets (urb).

Preprocessing. Regarding the preprocessing phase, in Table 2 we report
the computational time and the average percentage of TRUE flags of each
edge obtained by partitioning the graph into 64 or 128 regions.

graph n. of regions preprocessing time % TRUE flags
(sec.)

road network of Luxembourg 64 27 46.2
road network of Netherlands 128 6369 42.7
road network of Germany 128 80981 42.8

Table 2. Preprocessing time. The first column shows the graph; the second one shows
the number of regions; the third one shows the preprocessing time; and the last one
shows the average percentage of TRUE flags.

To evaluate the performances of UPDATE-ARC-FLAGS, we exe-
cute, for each considered graphs and for each road category, random se-
quences made of a different number c of update operations ranging from
1 to 30. The edge-increase amount for each of them is chosen at random

in [600, 1200], i.e., between 10 and 20 minutes. As performance indicator,
we chose the average time (in seconds) used by the algorithm to com-
plete a single update during the execution of a sequence. Experimental
results for the Luxembourg, Dutch and German road networks are given
in Figures 2, 3 and 4, respectively. In particular, each figure shows four
diagrams related to the four road categories considered. Each diagram
shows the average time needed by UPDATE-ARC-FLAGS to perform
a single update operation, as a function of the number c of weight increase
operations occurred in the sequence.

urban streets
regionalroads

national roads
motorways

Number of updates c

time(s)

302520151050

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 2. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per se-
quence (x-axis) on the road network of Luxembourg. The weight increase is randomly
selected in the interval [600, 1200].

As one can see, the UPDATE-ARC-FLAGS is considerably faster
than the preprocessing in all the tested graphs. As an example, performing
30 updates on motorways of the German network, using a from-scratch
recomputation, would last 80980.8 seconds per update, which means that
it would require 28 days, 2 hours, 50 minutes and 24 seconds overall time
to perform 30 updates. Algorithm UPDATE-ARC-FLAGS needs only
215.8 seconds per update yielding 1 hour, 47 minutes and 55 seconds
overall time. Thus, the speed-up achieved by UPDATE-ARC-FLAGS

in this case is about 375. Table 3 shows the speed-up gained by

urban streets
regionalroads

national roads
motorways

Number of updates c

time(s)

302520151050

55

50

45

40

35

30

25

20

15

10

5

0

Fig. 3. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Netherlands. The weight increase is randomly
selected in the interval [600, 1200].

urban streets
regionalroads

national roads
motorways

Number of updates c

time(s)

302520151050

250

200

150

100

50

0

Fig. 4. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Germany. The weight increase is randomly
selected in the interval [600, 1200].

UPDATE-ARC-FLAGS in the case of a sequence made of 30 weight
increase operations.

Graph Road category speed-up

road network of Luxembourg

mot 26.89
nat 26.62
reg 34.01
urb 50.19

road network of Netherlands

mot 123.01
nat 140.86
reg 211.43
urb 305.58

road network of Germany

mot 375.17
nat 427.31
reg 496.06
urb 882.87

Table 3. Speed-up gained by UPDATE-ARC-FLAGS in the case of a sequence
made of 30 weight increase operations. The first column shows the graph; the sec-
ond one shows the road category: motorways (mot), national roads (nat), regional
roads (reg), and urban streets (urb); and the third one shows the speed-up gained by
UPDATE-ARC-FLAGS with respect to a from-scratch approach.

Query Performance. In order to evaluate query performances,
we run queries using source-target pairs that are picked uniformly
at random. For each update sequence, first we update flags using
UPDATE-ARC-FLAGS and then we run queries to evaluate the av-
erage query time. To measure the performance loss, we execute the same
queries by using Arc-Flags updated by a from-scratch approach. Hence,
we execute the preprocessing from-scratch on the modified graph, we
perform the same sequence of queries and we compute the average query
time. The parameter chosen to evaluate performances is the ratio between
the average query time after the execution of UPDATE-ARC-FLAGS

and the one obtained with the from-scratch recomputation. This value is
referred at as query performance loss (qpl). In our experiments, we pick
sequences of 10000 random source-target pairs. Figures 5, 6 and 7 show
results about query performance loss on the three considered graphs. Each
figure shows four diagrams which represents the query performance loss
related to the four road categories considered.

As Figures 5, 6 and 7 show, using UPDATE-ARC-FLAGS to update
flags after a weight-increase operation leads to a decrease of query per-

urban streets
regionalroads

national roads
motorways

Number of updates c

qpl

302520151050

20

18

16

14

12

10

8

6

4

2

0

Fig. 5. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Luxembourg. The x-axis represents the number c of updates in the
sequence, the y-axis represents the query performance loss (qpl).

urban streets
regionalroads

national roads
motorways

Number of updates c

qpl

302520151050

80

70

60

50

40

30

20

10

0

Fig. 6. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Netherlands. The x-axis represents the number c of updates in the
sequence, the y-axis represents the query performance loss (qpl).

urban streets
regionalroads

national roads
motorways

Number of updates c

qpl

302520151050

80

70

60

50

40

30

20

10

0

Fig. 7. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Germany. The x-axis represents the number c of updates in the se-
quence, the y-axis represents the query performance loss (qpl).

formances. Moreover, the query performance loss grows linearly with the
number of updates. This is obvious, because UPDATE-ARC-FLAGS

only changes flags from FALSE to TRUE. In this way, an Arc-Flag search
would consider more edges as the number of updates become bigger lead-
ing to an increase of query time. It is also important to consider the
information provided by Table 1: urban edges represents more than 80%
in the road network of Luxembourg and in the German road network and
more than 90% in the road network of Netherlands. For this category of
edges, the use of UPDATE-ARC-FLAGS leads to a very small query
performance loss. As an example, in the German network, after twenty
updates on urban edges, queries are twenty times slower than after a from-
scratch recomputation. This is due to the fact that urban streets mainly
represent starting or ending edges of shortest paths and hence updates
on these edges do not influences many Arc-Flags. Thus, if we consider a
small number of updates, the use of UPDATE-ARC-FLAGS leads to
query times that are comparable with those of pure Arc-Flags.

In conclusion, UPDATE-ARC-FLAGS is able to rapidly up-
date Arc-Flags with a speed-up between 26 and 882 with respect
to a from-scratch recomputation (see Table 3), and to achieve still
good performances in the query phase with a performance loss of at
most 73. Table 4 shows the relation between the speed-up gained by

UPDATE-ARC-FLAGS in the update phase and the query performance
loss in the case of a sequence made of 30 weight increase operations. As
one can see, the query performance loss is always much smaller than the
speed-up.

Graph Road category speed-up qpl

road network of Luxembourg

mot 26.89 18.2
nat 26.62 19.6
reg 34.01 16.0
urb 50.19 10.3

road network of Netherlands

mot 123.01 71.39
nat 140.86 69.18
reg 211.43 41.13
urb 305.58 28.11

road network of Germany

mot 375.17 73.15
nat 427.31 55.71
reg 496.06 50.9
urb 882.87 28.78

Table 4. Relation between the speed-up gained by UPDATE-ARC-FLAGS in the
update phase and the query performance loss in the case of a sequence made of 30
weight increase operations. The first column shows the graph; the second one shows the
road category: motorways (mot), national roads (nat), regional roads (reg), and urban
streets (urb); the third one shows the speed-up gained by UPDATE-ARC-FLAGS;
and the last one shows the query performance loss (qpl).

Comparison. In order to evaluate the speed-up gained by our approach
against the simple use of bidirectional Dijkstra, we perform mixed se-
quences of edge weight update and query operations. Each sequence is
made of 1000 operations. In particular, we run a different number c of
update operations ranging from 1 to 30, with a random edge-increase
amount in [600, 1200], and 1000−c queries using source-target pairs picked
uniformly at random.

When the current operation in the sequence is an edge weight up-
date, our approach performs UPDATE-ARC-FLAGS in order to run
Arc-Flags when a subsequent query operation occurs. A traditional ap-
proach just stores the edge weight changes in O(1) and runs bidirectional
Dijkstra for all the subsequent query operations. As a performance meter,
we choose the ratio rseq between the overall time required by the tradi-
tional approach to perform the entire sequence of operations and that
required by our approach. Results for the considered graphs and road
categories are reported in Figures 8, 9 and 10.

urban streets
regionalroads

national roads
motorways

Number of updates c

rseq

302520151050

11

10

9

8

7

6

5

4

3

2

1

0

Fig. 8. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Luxembourg. The x-axis represents the number c of
edge weight updates in the sequence, the y-axis represents the ratio rseq between the
time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.

urban streets
regionalroads

national roads
motorways

Number of updates c

rseq

302520151050

35

30

25

20

15

10

5

0

Fig. 9. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Netherlands. The x-axis represents the number c of
edge weight updates in the sequence, the y-axis represents the ratio rseq between the
time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.

urban streets
regionalroads

national roads
motorways

Number of updates c

rseq

302520151050

45

40

35

30

25

20

15

10

5

0

Fig. 10. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Germany. The x-axis represents the number c of edge
weight updates in the sequence, the y-axis represents the ratio rseq between the time
required by the traditional approach (bidirectional Dijkstra) and that required by our
approach.

As expected, rseq tends to decrease with c. In particular it is bigger
than 1 only when c < 20. This is due to the fact that the traditional ap-
proach does not perform any update phase while our approach performs
UPDATE-ARC-FLAGS. This is slower than a simple bidirectional Di-
jkstra’s query algorithm, even if it is faster than any other preprocessing
algorithms as shown above. When the number c of weight increase op-
erations in the sequence is high, this time overhead becomes evident,
yielding to a value of rseq which is smaller than 1. In addition to that,
query performances decrease with the increase of c. This is due to the
query performance loss induced by UPDATE-ARC-FLAGS. However,
when c is less than 20 we can see that our approach leads to a significant
speed-up especially in the bigger graph.

5 Conclusion

Despite the great interest dedicated during the last years to speed-up
techniques for shortest paths, there are only few published algorithms
which are proven to work in dynamic graphs. In this paper, we proposed
a first approach to cope with Arc-Flags in dynamic graphs subject to
weight increase operations.

The main idea is to define a threshold for each edge of the graph and
compare it with the edge weight increase when it occurs. In this way,
we are able to determine whether an edge label should be set to TRUE
but we are not able to determine whether an it should be set to FALSE.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios in linear
time without maintaining shortest path trees. On the other hand, we keep
unnecessarily true flags which leads to efficiency loss in the query phase.
Nevertheless, we experimentally show that such an efficiency loss is very
small compared to the speed-up gained in the update phase.

References

1. D. Delling. Engineering and Augmenting Route Planning Algorithms. PhD thesis,
Universität Karlsruhe (TH), Fakultät für Informatik, 2009.

2. D. Delling and G. Nannicini. Bidirectional Core-Based Routing in Dynamic Time-
Dependent Road Networks. In S.-H. Hong, H. Nagamochi, and T. Fukunaga,
editors, Proceedings of the 19th International Symposium on Algorithms and Com-
putation (ISAAC’08), volume 5369 of Lecture Notes in Computer Science, pages
813–824. Springer, December 2008.

3. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of
Large and Complex Networks, volume 5515 of Lecture Notes in Computer Science,
pages 117–139. Springer, 2009.

4. D. Delling and D. Wagner. Landmark-Based Routing in Dynamic Graphs. In
Demetrescu [5], pages 52–65.

5. C. Demetrescu, editor. Proceedings of the 6th Workshop on Experimental Algo-
rithms (WEA’07), volume 4525 of Lecture Notes in Computer Science. Springer,
June 2007.

6. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

7. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms
for maintaining shortest paths trees. Journal of Algorithms, 34(2):251–281, 2000.

8. A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’05), pages 156–165, 2005.

9. M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling. Fast Point-to-Point Short-
est Path Computations with Arc-Flags. In C. Demetrescu, A. V. Goldberg, and
D. S. Johnson, editors, Shortest Path Computations: Ninth DIMACS Challenge,
volume 24 of DIMACS Book. American Mathematical Society, 2009. To appear.

10. U. Lauther. Slow preprocessing of graphs for extremely fast shortest path calcu-
lations. In Workshop on Computational Integer Programming at ZIB, 1997.

11. U. Lauther. An extremely fast, exact algorithm for finding shortest paths. Static
Networks with Geographical Background, 22:219–230, 2004.

12. P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proceedings of
the 14th Annual European Symposium on Algorithms (ESA’06), volume 4168 of
Lecture Notes in Computer Science, pages 804–816. Springer, 2006.

13. D. Schultes and P. Sanders. Dynamic Highway-Node Routing. In Demetrescu [5],
pages 66–79.

14. F. Schulz, D. Wagner, and C. Zaroliagis. Using Multi-Level Graphs for Timetable
Information in Railway Systems. In Proceedings of the 4th Workshop on Algorithm
Engineering and Experiments (ALENEX’02), volume 2409 of Lecture Notes in
Computer Science, pages 43–59. Springer, 2002.

15. D. Wagner and T. Willhalm. Geometric Speed-Up Techniques for Finding Short-
est Paths in Large Sparse Graphs. In Proceedings of the 11th Annual European
Symposium on Algorithms (ESA’03), volume 2832 of Lecture Notes in Computer
Science, pages 776–787. Springer, 2003.

16. D. Wagner, T. Willhalm, and C. Zaroliagis. Geometric Containers for Efficient
Shortest-Path Computation. ACM Journal of Experimental Algorithmics, 10:1.3,
2005.

