We present a new and more efficient technique for computing the route that
maximizes the probability of on-time arrival in stochastic networks, also known
as the path-based stochastic on-time arrival (SOTA) problem. Our primary
contribution is a pathfinding algorithm that uses the solution to the
policy-based SOTA problem---which is of pseudo-polynomial-time complexity in
the time budget of the journey---as a search heuristic for the optimal path. In
particular, we show that this heuristic can be exceptionally efficient in
practice, effectively making it possible to solve the path-based SOTA problem
as quickly as the policy-based SOTA problem. Our secondary contribution is the
extension of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and preprocessing
algorithms, we evaluate their performance on two different real-world networks.
To the best of our knowledge, these techniques provide the most efficient
computation strategy for the path-based SOTA problem for general probability
distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental
Algorithms 2016 and published by Springer in the Lecture Notes in Computer
Science series on June 1, 2016. Includes typographical corrections and
modifications to pre-processing made after the initial submission to SODA'15
(July 7, 2014