12 research outputs found

    An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a Lower Permian tonstein bed (Faxinal Coalfield, Paraná Basin, Brazil)

    Get PDF
    For the first time, the dispersed organic matter in the tonstein layer interbedded with a coal seam in the Faxinal Coalfield (Sakmarian, Southern Paraná Basin, Brazil) is characterized. The deposition of clusters of pollen grains was highly influenced by the intense ash fall process that probably occurred during seasonal dehiscence of reproductive structures. The well-preserved phytoclasts with their upper and lower leaf cuticles stuck together indicate that the rapid fall of ash on this material hindered organic biodegradation. The preservation of seemingly autochthonous Botryococcus colonies at the top of the tonstein layer is evidence of the subaqueous deposition of this layer. The darkening in cuticles and xylem phytoclasts can be attributed to different causes: the thermal influence of ash fall during deposition, chemical effects of the ash, prolonged oxidation of organic matter in low water level conditions or the burning of plant organs by wildfires. Analyses of dispersed organic matter along the tonstein layer showed that the organic matter succession reflects the composition of different plant strata (herbaceous pteridophytes and arboreal glossopterids-cordaitaleans) around the deposition site

    An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a lower Permian tonstein layer (Faxinal Coalfield, Paraná Basin, Brazil)

    Get PDF
    For the first time, the dispersed organic matter in the tonstein layer interbedded with a coal seam in the Faxinal Coalfield (Sakmarian, Southern Paraná Basin, Brazil) is characterized. The deposition of clusters of pollen grains was highly influenced by the intense ash fall process that probably occurred during seasonal dehiscence of reproductive structures. The well-preserved phytoclasts with their upper and lower leaf cuticles stuck together indicate that the rapid fall of ash on this material hindered organic biodegradation. The preservation of seemingly autochthonous Botryococcus colonies at the top of the tonstein layer is evidence of the subaqueous deposition of this layer. The darkening in cuticles and xylem phytoclasts can be attributed to different causes: the thermal influence of ash fall during deposition, chemical effects of the ash, prolonged oxidation of organic matter in low water level conditions or the burning of plant organs by wildfires. Analyses of dispersed organic matter along the tonstein layer showed that the organic matter succession reflects the composition of different plant strata (herbaceous pteridophytes and arboreal glossopterids-cordaitaleans) around the deposition site

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions

    An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a Lower Permian tonstein bed (Faxinal Coalfield, Paraná Basin, Brazil)

    Get PDF
    For the first time, the dispersed organic matter in the tonstein layer interbedded with a coal seam in the Faxinal Coalfield (Sakmarian, Southern Paraná Basin, Brazil) is characterized. The deposition of clusters of pollen grains was highly influenced by the intense ash fall process that probably occurred during seasonal dehiscence of reproductive structures. The well-preserved phytoclasts with their upper and lower leaf cuticles stuck together indicate that the rapid fall of ash on this material hindered organic biodegradation. The preservation of seemingly autochthonous Botryococcus colonies at the top of the tonstein layer is evidence of the subaqueous deposition of this layer. The darkening in cuticles and xylem phytoclasts can be attributed to different causes: the thermal influence of ash fall during deposition, chemical effects of the ash, prolonged oxidation of organic matter in low water level conditions or the burning of plant organs by wildfires. Analyses of dispersed organic matter along the tonstein layer showed that the organic matter succession reflects the composition of different plant strata (herbaceous pteridophytes and arboreal glossopterids-cordaitaleans) around the deposition site

    An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a Lower Permian tonstein bed (Faxinal Coalfield, Paraná Basin, Brazil)

    No full text
    For the first time, the dispersed organic matter in the tonstein layer interbedded with a coal seam in the Faxinal Coalfield (Sakmarian, Southern Paraná Basin, Brazil) is characterized. The deposition of clusters of pollen grains was highly influenced by the intense ash fall process that probably occurred during seasonal dehiscence of reproductive structures. The well-preserved phytoclasts with their upper and lower leaf cuticles stuck together indicate that the rapid fall of ash on this material hindered organic biodegradation. The preservation of seemingly autochthonous Botryococcus colonies at the top of the tonstein layer is evidence of the subaqueous deposition of this layer. The darkening in cuticles and xylem phytoclasts can be attributed to different causes: the thermal influence of ash fall during deposition, chemical effects of the ash, prolonged oxidation of organic matter in low water level conditions or the burning of plant organs by wildfires. Analyses of dispersed organic matter along the tonstein layer showed that the organic matter succession reflects the composition of different plant strata (herbaceous pteridophytes and arboreal glossopterids-cordaitaleans) around the deposition site

    2 H

    No full text
    corecore