31,328 research outputs found

    High Order Methods for a Class of Volterra Integral Equations with Weakly Singular Kernels

    Get PDF
    The solution of the Volterra integral equation, ()x(t)=g1(t)+tg2(t)+0tK(t,s,x(s))tsds,0tT, ( * )\qquad x(t) = g_1 (t) + \sqrt {t}g_2 (t) + \int _0^t \frac {K(t,s,x(s))} {\sqrt {t - s} } ds, \quad 0 \leqq t \leqq T, where g1(t)g_1 (t), g2(t)g_2 (t) and K(t,s,x)K(t,s,x) are smooth functions, can be represented as x(t)=u(t)+tv(t)x(t) = u(t) + \sqrt {t}v(t) ,0tT0 \leqq t \leqq T, where u(t)u(t), v(t)v(t) are, smooth and satisfy a system of Volterra integral equations. In this paper, numerical schemes for the solution of (*) are suggested which calculate x(t)x(t) via u(t)u(t), v(t)v(t) in a neighborhood of the origin and use (*) on the rest of the interval 0tT0 \leqq t \leqq T. In this way, methods of arbitrarily high order can be derived. As an example, schemes based on the product integration analogue of Simpson's rule are treated in detail. The schemes are shown to be convergent of order h7/2h^{{7 / 2}} . Asymptotic error estimates are derived in order to examine the numerical stability of the methods

    The norm of a Ree group

    Full text link
    We give an explicit construction of the Ree groups of type G2G_2 as groups acting on mixed Moufang hexagons together with detailed proofs of the basic properties of these groups contained in the two fundamental papers of Tits on this subject. We also give a short proof that the norm of a Ree group is anisotropic

    Hyperspectral pan-sharpening: a variational convex constrained formulation to impose parallel level lines, solved with ADMM

    Full text link
    In this paper, we address the issue of hyperspectral pan-sharpening, which consists in fusing a (low spatial resolution) hyperspectral image HX and a (high spatial resolution) panchromatic image P to obtain a high spatial resolution hyperspectral image. The problem is addressed under a variational convex constrained formulation. The objective favors high resolution spectral bands with level lines parallel to those of the panchromatic image. This term is balanced with a total variation term as regularizer. Fit-to-P data and fit-to-HX data constraints are effectively considered as mathematical constraints, which depend on the statistics of the data noise measurements. The developed Alternating Direction Method of Multipliers (ADMM) optimization scheme enables us to solve this problem efficiently despite the non differentiabilities and the huge number of unknowns.Comment: 4 pages, detailed version of proceedings of conference IEEE WHISPERS 201

    General linearized theory of quantum fluctuations around arbitrary limit cycles

    Get PDF
    The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, which is the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a testbed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.Comment: Constructive suggestions and criticism are welcom

    Number of distinct sites visited by N random walkers on a Euclidean lattice

    Full text link
    The evaluation of the average number S_N(t) of distinct sites visited up to time t by N independent random walkers all starting from the same origin on an Euclidean lattice is addressed. We find that, for the nontrivial time regime and for large N, S_N(t) \approx \hat S_N(t) (1-\Delta), where \hat S_N(t) is the volume of a hypersphere of radius (4Dt \ln N)^{1/2}, \Delta={1/2}\sum_{n=1}^\infty \ln^{-n} N \sum_{m=0}^n s_m^{(n)} \ln^{m} \ln N, d is the dimension of the lattice, and the coefficients s_m^{(n)} depend on the dimension and time. The first three terms of these series are calculated explicitly and the resulting expressions are compared with other approximations and with simulation results for dimensions 1, 2, and 3. Some implications of these results on the geometry of the set of visited sites are discussed.Comment: 15 pages (RevTex), 4 figures (eps); to appear in Phys. Rev.
    corecore