10,025 research outputs found

    The general gaugings of maximal d=9 supergravity

    Full text link
    We use the embedding tensor method to construct the most general maximal gauged/massive supergravity in d=9 dimensions and to determine its extended field content. Only the 8 independent deformation parameters (embedding tensor components, mass parameters etc.) identified by Bergshoeff \textit{et al.} (an SL(2,R) triplet, two doublets and a singlet can be consistently introduced in the theory, but their simultaneous use is subject to a number of quadratic constraints. These constraints have to be kept and enforced because they cannot be used to solve some deformation parameters in terms of the rest. The deformation parameters are associated to the possible 8-forms of the theory, and the constraints are associated to the 9-forms, all of them transforming in the conjugate representations. We also give the field strengths and the gauge and supersymmetry transformations for the electric fields in the most general case. We compare these results with the predictions of the E11 approach, finding that the latter predicts one additional doublet of 9-forms, analogously to what happens in N=2, d=4,5,6 theories.Comment: Latex file, 43 pages, reference adde

    M Theory As A Matrix Model: A Conjecture

    Get PDF
    We suggest and motivate a precise equivalence between uncompactified eleven dimensional M-theory and the N = infinity limit of the supersymmetric matrix quantum mechanics describing D0-branes. The evidence for the conjecture consists of several correspondences between the two theories. As a consequence of supersymmetry the simple matrix model is rich enough to describe the properties of the entire Fock space of massless well separated particles of the supergravity theory. In one particular kinematic situation the leading large distance interaction of these particles is exactly described by supergravity . The model appears to be a nonperturbative realization of the holographic principle. The membrane states required by M-theory are contained as excitations of the matrix model. The membrane world volume is a noncommutative geometry embedded in a noncommutative spacetime.Comment: Typo and tex error corrected. 41 pages, harvma

    The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities

    Get PDF
    We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6 supergravity and compare them with those of the pure, ungauged, theories (worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody approach made by Kleinschmidt and Roest. We find complete agreement in the ungauged case but we also find that, after gauging, new Stueckelberg symmetries reduce the number of independent "physical" top-forms. The analysis has to be performed to all orders in fermion fields. We discuss the construction of the worldvolume effective actions for the p-branes which are charged with respect to the (p+1)-form potentials and the relations between the tensor hierarchies and p-branes upon dimensional reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the analysis to all orders in fermion

    Tensor hierarchies, Borcherds algebras and E11

    Full text link
    Gauge deformations of maximal supergravity in D=11-n dimensions generically give rise to a tensor hierarchy of p-form fields that transform in specific representations of the global symmetry group E(n). We derive the formulas defining the hierarchy from a Borcherds superalgebra corresponding to E(n). This explains why the E(n) representations in the tensor hierarchies also appear in the level decomposition of the Borcherds superalgebra. We show that the indefinite Kac-Moody algebra E(11) can be used equivalently to determine these representations, up to p=D, and for arbitrarily large p if E(11) is replaced by E(r) with sufficiently large rank r.Comment: 22 pages. v2: Published version (except for a few minor typos detected after the proofreading, which are now corrected

    Electric and magnetic charges in N=2 conformal supergravity theories

    Get PDF
    General Lagrangians are constructed for N=2 conformal supergravity theories in four space-time dimensions involving gauge groups with abelian and/or non-abelian electric and magnetic charges. The charges are encoded in the gauge group embedding tensor. The scalar potential induced by the gauge interactions is quadratic in this tensor, and, when the embedding tensor is treated as a spurionic quantity, it is formally covariant with respect to electric/magnetic duality. This work establishes a general framework for studying any deformation induced by gauge interactions of matter-coupled N=2 supergravity theories. As an application, full and residual supersymmetry realizations in maximally symmetric space-times are reviewed. Furthermore, a general classification is presented of supersymmetric solutions in AdS2×S2\mathrm{AdS}_2\times S^2 space-times. As it turns out, these solutions allow either eight or four supersymmetries. With four supersymmetries, the spinorial parameters are Killing spinors of AdS2\mathrm{AdS}_2 that are constant on S2S^2, so that they carry no spin, while the bosonic background is rotationally invariant.Comment: 49 pages, typos correcte

    Non-abelian D=11 Supermembrane

    Full text link
    We obtain a U(M) action for supermembranes with central charges in the Light Cone Gauge (LCG). The theory realizes all of the symmetries and constraints of the supermembrane together with the invariance under a U(M) gauge group with M arbitrary. The worldvolume action has (LCG) N=8 supersymmetry and it corresponds to M parallel supermembranes minimally immersed on the target M9xT2 (MIM2). In order to ensure the invariance under the symmetries and to close the corresponding algebra, a star-product determined by the central charge condition is introduced. It is constructed with a nonconstant symplectic two-form where curvature terms are also present. The theory is in the strongly coupled gauge-gravity regime. At low energies, the theory enters in a decoupling limit and it is described by an ordinary N=8 SYM in the IR phase for any number of M2-branes.Comment: Contribution to the Proceedings of the Dubna International SQS'09 Workshop ("Supersymmetries and Quantum Symmetries-2009", July 29 - August 3, 2009. 12pg, Late

    An active asteroid belt causing the UX Ori phenomenon in RZ Psc

    Full text link
    We report the discovery of mid-infrared excess emission in the young object RZ Psc. The excess constitutes ~8% of its Lbol, and is well fit by a single 500K black-body implying a dust free region within 0.7AU for optically thick dust. The object displays dust obscuration events (UXOR behaviour) with a time-scale that suggests dusty material on orbits of 0.5AU. We also report a 12.4 year cyclical photometric variability which can be interpreted as due to perturbations in the dust distribution. The system is characterized by a high inclination, marginal extinction (during bright photometric states), a single temperature for the warm dust, and an age estimate which puts the star beyond the formation stage. We propose that the dust occultation events present a dynamical view of an active asteroid belt whose collisional products sporadically obscure the central star.Comment: Accepted for A&A letter
    • …
    corecore