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1 Introduction

In four space-time dimensions, Lagrangians with abelian gauge fields have generically less
symmetry than their corresponding equations of motion. The full invariance group of
the combined field equations and Bianchi identities in principle involves a subgroup of
the electric/magnetic duality group, Sp(2n,R) for n vector fields, suitably combined with
transformations of the matter fields. Subgroups of the symmetry group of the Lagrangian
can be gauged in the conventional way by introducing covariant derivatives and covariant
field strengths. Introducing gauge groups which involve elements of the electric/magnetic
duality group that do not belong to the symmetry group of the Lagrangian, are not possible
in this way.

To circumvent this problem, one may therefore first convert the Lagrangian by an elec-
tric/magnetic equivalence transformation to a different, but equivalent, Lagrangian that
has the desired gauge group as a symmetry. However, this procedure is cumbersome. One
reason for this is that the gauge fields in the old and in the new electric/magnetic duality
frame are not generically related by local field redefinitions. The effect of changing the
duality frame is therefore not straightforward, and it is by no means trivial to explicitly
obtain the new Lagrangian (see e.g. [1]). A related aspect is that, when the gauge fields
belong to supermultiplets, their relation with other fields of the multiplet will be affected



by changes of the duality frame, unless one simultaneously performs corresponding redefini-
tions of these fields as well.! The modern embedding tensor approach circumvents all these
problems by introducing, from the start, both electric and magnetic gauge fields as well as
tensor gauge fields. In this approach the gauge group is not restricted to a subgroup of the
invariance group of the Lagrangian, but it must only be a subgroup of the symmetry group
of field equations and Bianchi identities. The formalism is straightforwardly applicable
to any given Lagrangian, and the gauge group is only restricted by two group-theoretical
constraints on the embedding tensor [3].

In this paper we study general gaugings of N = 2 supergravity theories based on vector
supermultiplets and hypermultiplets. Because these theories can generally be studied by
means of the superconformal multiplet calculus [4-6], it suffices to understand the embed-
ding tensor framework in the context of conformal supergravity. This study is facilitated
by the fact that the embedding tensor framework has already been considered for rigid
N = 2 supersymmetric gauge theories [7], without paying particular attention to the class
of superconformally invariant models. The purpose of the present paper is to fill this gap
by presenting a comprehensive treatment of the embedding tensor method in the context
of locally supersymmetric N = 2 theories.

Theories with N = 2 supersymmetry are special with respect to electric/magnetic
duality. For N = 1 supersymmetry the transformations of the matter fields under elec-
tric/magnetic duality, and thus under the gauge group, are not a priori defined, and will
depend on the details of the model. On the other hand, in theories with N > 2 supersym-
metries all of the matter fields are closely linked to the vector fields, because they belong
to common supermultiplets. Theories with NV = 2 supersymmetries are exceptional in that
they exhibit both of these characteristic features. The complex scalars belonging to the
vector multiplets transform in a well-defined way under electric/magnetic duality so that
the Lagrangian will retain its standard form expressed in terms of a holomorphic function,
while the scalars of the hypermultiplets have no a priori defined transformations under elec-
tric/magnetic duality. Prior to switching on the gauging, the hypermultiplets are invariant
under some rigid symmetry group that is independent of the electric/magnetic duality
group. Once the gauge group has been embedded in the latter group, then one has to sepa-
rately specify its embedding into the symmetry group associated with the hypermultiplets.

The embedding tensor approach of [3] makes use of both electric and magnetic charges
and their corresponding gauge fields. The charges are encoded in terms of an embedding
tensor, which specifies the embedding of the gauge group into the full rigid invariance
group. This embedding tensor is treated as a spurionic object (a quantity that is treated
as a dynamical field, but that is frozen to a constant at the end of the calculation), so
that the electric/magnetic duality structure of the ungauged theory is preserved when the
charges are turned on. Besides introducing a set of dual magnetic gauge fields, also tensor
gauge fields are required transforming in the adjoint representation of the rigid invariance
group. These extra fields carry additional off-shell degrees of freedom, but the number of

!One way to circumvent this is by describing the scalar fields in terms of sections whose parametrization
is linked to a specific frame (see, for instance, [2]).



physical degrees of freedom remains the same owing to extra gauge transformations. Prior
to [3] it had already been discovered that magnetic charges tend to be accompanied by
tensor fields. An early example of this was presented in [8], and subsequently more theories
with magnetic charges and tensor fields were constructed, for instance, in [9-11], mostly
in the context of abelian gauge groups. The embedding tensor approach has already been
explored for many supersymmetric theories in four space-time dimensions. For instance, it
was successfully applied to N = 4 supergravity [12] and to N = 8 supergravity [13]. More
recently it has also been discussed for N = 1 supergravity [14]. In [7] some applications
to N = 2 supergravity were already presented, under the assumption that the conformal
multiplet calculus [4-6] is applicable. As it turned out, the results of the embedding tensor
approach confirm and/or clarify various previous results in the literature, especially for
abelian gaugings [15, 16]. The embedding tensor is ideally suited for the study of flux
compactifications in string theory (for a review, see [17]). Recently it was successfully
employed in a study of partial breaking of N =2 to N = 1 supersymmetry [18, 19].

The supersymmetric Lagrangians derived in this paper incorporate gaugings in both
the vector and hypermultiplet sectors. The vector multiplets are initially defined as off-
shell multiplets, but the presence of the magnetic charges causes a breakdown of off-shell
supersymmetry. Of course, conventional hypermultiplets based on a finite number of fields
will not constitute an off-shell representation of the supersymmetry algebra irrespective of
the presence of charges. We refer to a more in-depth discussion of the off-shell aspects of the
embedding tensor method in [7], where a construction was presented in which the tensor
fields associated with the magnetic charges were contained in a tensor supermultiplet.

Besides giving a comprehensive treatment of the embedding tensor formalism in the
context of local N = 2 supersymmetric theories, we also present two applications to il-
lustrate how the embedding tensor formalism can be used to obtain rather general results
about realizations of N = 2 gauged supergravities. One concerns the supersymmetric real-
izations in maximally symmetric spaces. In flat Minkowski space, it was established that
residual supersymmetry is only possible in the presence of magnetic charges [20-24]. Here,
we therefore briefly review the situation in the context of the embedding tensor approach,
where it is natural to have both electric and magnetic charges.

A second application deals with supersymmetric solutions in AdS, x S? space-times.
Here we establish that there exist only two classes of supersymmetric solutions. One con-
cerns fully supersymmetric solutions. It contains the solutions described in [25] as well as
the near-horizon solution of ungauged supergravity that appears for BPS black holes. The
other class exhibits four supersymmetries and these solutions may appear as near-horizon
geometries of BPS black holes in N = 2 gauged supergravity. Interestingly enough, solu-
tions in AdS, x S? with only two supersymmetries are excluded. The spinor parameters
associated with the four supersymmetries are AdS, Killing spinors that are constant on S2,
so that they carry no spin. Nevertheless the bosonic background is rotationally invariant.
The spin assignments change in this background, because the spin rotations associated with
the S? isometries become entangled with R-symmetry transformations, a phenomenon that
is somewhat similar to what happens for magnetic monopole solutions where the rotational
symmetry becomes entangled with gauge transformations [26]. In the superconformal per-



spective, these solutions have R-symmetry connections living on S2, and this explains the
geometric origin of the entanglement. It is to be expected that the near-horizon geometry
of a recently presented static, spherically symmetric, black hole solution [27, 28] will coin-
cide with one of the solutions described in this paper. The results of this paper then imply
that this black hole solution must exhibit supersymmetry enhancement at the horizon.

This paper is organized as follows. In section 2 we recall the relevant features of N = 2
vector multiplets and electric/magnetic duality in the context of conformal supergravity,
and we introduce the electric and magnetic gauge fields. Hypermultiplets, hyperkéhler
cones and their isometries are introduced in a superconformal setting in section 3. In
section 4 we present the relevant Lagrangians for matter fields coupled to conformal super-
gravity. Section 5 contains a discussion of the possible gauge transformations, the electric
and magnetic charges, and the embedding tensor. In section 6 we describe the introduction
of tensor fields, needed in the presence of general charge assignments. Section 7 deals with
the algebra of superconformal transformations in the presence of a gauging. It presents the
extra masslike terms and the scalar potential in the vector multiplet and hypermultiplet
Lagrangians that are induced by these gaugings. Finally, in section 8 we summarize our
results and review two applications. Readers who are not primarily interested in the more
technical details of the embedding tensor formalism, can proceed directly to this section.
We have refrained from collecting additional information in an appendix and refer instead
to the appendices presented in [29].

2 Superconformal vector multiplets and electric/magnetic duality

Vector supermultiplets in four space-time dimensions with N = 2 supersymmetry can
be defined in a superconformal background. Consider n + 1 of these multiplets, labeled
by indices A = 0,1,...,n. Vector supermultiplets comprise complex scalar fields X%,
gauge fields WﬂA, and Majorana spinors which are conveniently decomposed into chiral
and anti-chiral components: spinors ;® have positive, and spinors Q** have negative
chirality (so that 4°Q;* = Q;* and 4°Q** = —Q*). The spinors carry indices i = 1,2, and
transform as doublets under the R-symmetry group SU(2). This group is realized locally
with gauge fields belonging to the superconformal background, as we shall discuss below.
Furthermore there are auxiliary fields Y;;*, which satisfy the pseudo-reality constraint
(Vi) = e*edyyA, so that they transform as real vectors under SU(2). The tensors
Fjﬁ,A are the (anti-)selfdual (complex) components of the field strengths, which will be
expressed in terms of vector fields WMA. The supersymmetry transformations of these
fields will depend on the superconformal background.

Before presenting the supersymmetry transformations of the vector multiplets, we first
specify the superconformal background fields, which comprise the so-called Weyl super-
multiplet, and their relation to the superconformal transformations. The latter contains
the generators of general-coordinate, local Lorentz, dilatation, special conformal, chiral
SU(2) and U(1), supersymmetry (Q) and special supersymmetry (S) transformations. The
gauge fields associated with general-coordinate transformations (e,*), dilatations (b,), chi-
ral symmetry (Vﬂij and A,) and Q-supersymmetry (1##’) are independent fields. The



Table 1. Weyl and chiral weights of the vector multiplet fields.

remaining gauge fields associated with the Lorentz (w,), special conformal (f,*) and
S-supersymmetry transformations ((b,f) are dependent fields. They are composite objects,
which depend on the independent fields of the multiplet [4-6]. The corresponding super-
covariant curvatures and covariant fields are contained in a tensor chiral multiplet, which
comprises 24 4 24 off-shell degrees of freedom. In addition to the independent supercon-
formal gauge fields, it contains three other fields: a Majorana spinor doublet x?, a scalar
D, and a selfdual Lorentz tensor T;;, which is anti-symmetric in [ab] and [ij]. We refer
to the appendices in [29] for an extended summary of the superconformal transformations
of the Weyl multiplet fields, the expressions for the curvatures and other useful details.
The transformations of the vector multiplet fields under dilatations and chiral transfor-

mations are given in table 1. Under local Q- and S-supersymmetry they are as follows [4],
sxXA — 7iQiA ’
5WMA :Eijéi(’YquA + 24y X N+ €ij€ ('YMQ A 2¢“ijA) )
50N = QDXAei 17"”F €Zj€j + YijAej + 2XA77i ,
5V =28, D" + 2565 €PN (2.1)

Here €' and ¢; denote the spinorial parameters of Q- supersymmetry and 0’ and 7; those of S-
supersymmetry. The field strengths F;w =20, w,A »]" are contained in the supercovariant

combination,
Fu =FFY+ F ™ — 900, (1" + 0 XN — it (0 A + 45,7 X0
1 . _ .
-, (XA e + XA, 0 e5). (2.2)

The full superconformally covariant derivatives are denoted by D,,, while D,, will denote
a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2) transfor-

mations. As an example of the latter, we note the definitions,

Dy X" = (8, — b, + iAH)XA
1

DO = (0, -
2 (aﬂ 4

1 .
WPy — b + 1A )Q/‘— 214/@-9]»“. (2.3)

We now assume an holomorphic function F(X) of the fields X, which is homogeneous
of second degree, i.e. F(AX) = A2F(X), for any complex parameter \. As is well known [5,



30], such a function can be used to write down a consistent action for the vector multiplets
in the superconformal background provided by the Weyl multiplet fields. Rather than
to determine this action, we first consider an extension of the field representation that
will facilitate the treatment of electric/magnetic duality in the presence of non-zero gauge
charges. Since this duality ultimately involves the equations of motion, it will be essential
that the action exists, but for the purpose of this section it is not necessary to display its
precise form.

In the absence of charged fields, abelian gauge fields T/VMA appear exclusively through
the field strengths, F, W,A =2 O[HW,,]A. The field equations for these fields and the Bianchi
identities for the field strengths comprise 2(n + 1) equations,

A
Nubrp)” =0=0,Gypn, (2.4)
where o
Gv A = €€ p0 DEA (2.5)

At this point we cannot give the form of Gz, because we have not yet specified the action.
Instead, we will extract its definition below by using supersymmetry.
It is convenient to combine the tensors FH,,A and G, into a (2n + 2)-dimensional

A
G = (FW ) : (2.6)

G urvA

vector,

so that (2.4) reads O[MGW,}M = 0. Obviously these 2(n + 1) equations are invariant under
real 2(n + 1)-dimensional rotations of the tensors G, ",

FA UAZ ZAE FE
. , (2.7)
(o) = (e ve) )

Half of the rotated tensors can be adopted as new field strengths defined in terms of new
gauge fields, and the Bianchi identities on the remaining tensors can then be interpreted
as field equations belonging to some new Lagrangian expressed in terms of the new field
strengths. In order that such a Lagrangian exists, the real matrix in (2.7) must belong to
the group Sp(2n+2;R). This group consists of real matrices that leave the skew-symmetric

01
- (1), o

The conjugate matrix QM is defined by QMNQnp = —6M p. Here we employ an Sp(2n +

tensor 2,7y invariant,

2; R) covariant notation for the 2(n+1)-dimensional symplectic indices M, N, ..., such that
ZM = (ZM, Zs). Likewise we use vectors with lower indices according to Yy; = (Y3, Y>),
transforming according to the conjugate representation so that Z™ Y); is invariant.

The Sp(2n+2;R) transformations are known as electric/magnetic dualities, which also
act on electric and magnetic charges (for a review of electric/magnetic duality, see [1]). The
Lagrangian depends on the electric/magnetic duality frame and is therefore not unique.



Different Lagrangians related by electric/magnetic duality lead to equivalent field equations
and thus belong to the same equivalence class. These alternative Lagrangians remain
supersymmetric but because the field strengths (and thus the underlying gauge fields)
have been redefined, the standard relation between the various fields belonging to the
vector supermultiplet, encoded in (2.1), is lost. However, upon a suitable redefinition of
the other vector multiplet fields (possibly up to terms that will vanish subject to equations
of motion) this relation can be preserved. It is to be expected that the new Lagrangian
is again encoded in terms of a holomorphic homogeneous function, expressed in terms
of the redefined scalar fields. Just as the Lagrangian changes, this function will change
as well. Hence, different functions F'(X) can belong to the same equivalence class. The
new function is such that the vector XM = (X, F)) transforms under electric/magnetic

XA XA UAE ZAZ XZ
()= . (2.9)
<FA> (FA> <WA2 VAE> <F2>

The new function F(X) of the new scalars X* follows from integration of (2.9) and takes

duality according to

the form

F(X)=F(X) - ;XAFA(X) + ;(UTW) AnXAXE
+ ;(UTV + WIZ)Z\EX P (X) + ;(ZTV)AZFA(X)FE(X) . (2.10)

There are no integration constants in this case because the function must remain homoge-
neous of second degree.

In general it is not easy to determine F(X) from (2.10) as it involves the inversion of
XA = UAXE 4 ZAS (X). As we emphasized in section 1, this is the reason why one
prefers to avoid changing the electric/magnetic duality frame. The duality transformations
on higher derivatives of F'(X) follow by differentiation and we note the results,

Fas(X) = (VA  Frs + Waz) [S15s,
X

Frsr(X) = Feaq [STYEA ST [STH%, (2.11)
where -
0X
She= s = Ut + 2 Frs. (2.12)

It is also convenient to introduce the symmetric real matrix,
Nas = —iFps + iFay, (2.13)

whose inverse will be denoted by N**  and which transforms under electric/magnetic
duality according to .
Nax(X,X) = Nea [STHA S 7P (2.14)

To determine the action of the dualities on the fermion fields, we consider supersym-
metry transformations of the symplectic vector X = (X, Fy), which can be written as



SXM = QM thus defining an Sp(2n + 2;R) covariant fermionic vector, Q;,

QiA
QM — , (2.15)
Fas ;%

Complex conjugation leads to a second vector, Q'™ of opposite chirality. From (2.15) one
derives that, under electric/magnetic duality,

Q0 =8 0., (2.16)

Note the identity
Qun XMoN =0, (2.17)

which also implies that supersymmetry variations of ;M are subject to Qv XM §Q;N =0
up to terms quadratic in the vector multiplet spinors. This observation explains some of
the identities that we will encounter in due course.

The supersymmetry transformation of ;™ follows from (2.1), and we decompose it
into the following form,

1 N . .
QM =2pxMe; + Q’Y’“’GEVM&]‘ ¢ + ZiMel +2 XM, . (2.18)

From this the existence follows of a symplectic vector of anti-selfdual supercovariant field

G- A
A- M _ [ T
G M= < ) : (2.19)

strengths,

GMVA

where @;VA = F;,A, with F!;/A defined in (2.2), and G’;UA is defined by,

A A 1 ~ g
GMVA = FAEFMVE - 8FAEF Qiz'ﬁu/QjF e’ (220)

We can also define a second symplectic array of anti-selfdual field strengths,

G- A
G = < " > , (2.21)
G/J,VA

with GWA = FWA. The second component, G, A, then follows from the identification
(compare to the decomposition (2.2)),

GH”M = G:VM + G;VM - eij&[ui(WV]QjM + ¢V]jXM) - gijqz[ui(lyu]QjM + ¢u]jXM)
1 ii _ ii
— 4(XM T,ul/ijgj +XM Tﬂyjeij). (222)

This implies the following decomposition for G, \ (and likewise for G:V A

Gop = FaxF,,~ =210, (2.23)



with

1 _ o o ,
— iFpsr Q5 Qe — 8NAZEij¢p27uu'7ij2

mv 16

1 _ o 1 _ g
- 8NA2XE €ijVp Y Vo’ + 8NAEXZ Ty e - (2.24)

Note that the homogeneity of F(X) is crucial for deriving these results. The defini-
tion (2.22) shows that also (F,,*, G,ux) transforms as a symplectic vector under elec-
tric/magnetic duality.

Consistency requires that the field strengths GWM satisfy a Bianchi identity. While
G WA clearly does, it is not obvious for the field strengths G, 4. The latter Bianchi identity
can, however, be provided by the field equation for the vector fields following from some
supersymmetric action. In that case G,a will coincide with (2.5). We shall verify in
section 4 that this is indeed the case for the action encoded in the holomorphic function
F(X). It should be obvious that also the field strengths G’WM satisfy a Bianchi-type
identity, but of a more complicated form. Identities of this type have been presented
in [4] for G,

To summarize, both the fields strengths @WM and GWM transform as a symplectic
vector under duality, and they differ in their fermionic terms and in terms proportional to
the selfdual and anti-selfdual tensor fields T;;; and T, respectively. The supercovariant
field strengths CAJWM appear in the supersymmetry transformation rules of the fermions,
while the field strengths GWM , when constrained by the standard Bianchi identities, im-
ply that FWA can be expressed in terms of a vector potential WMA, and is subject to
corresponding field equations.

Regarding the quantities ZijM , that also follow from (2.18), we have a similar situation.
They are defined by

o
ZM = . 1” - (2.25)
Fas Yij™ — 5 Fasr 79

which suggests that Zl-jM transforms under electric/magnetic duality as a symplectic vec-
tor. However, this is only possible provided we impose a pseudo-reality condition on Z;jx.
This constraint can also be understood as the result of field equations associated with a
supersymmetric action, whose Lagrangian will be presented in the next section 4.

From the fact that the field strengths G, A are subject to a Bianchi identity, it follows
that they can be expressed in terms of magnetic duals 5. Hence we introduce these mag-
netic gauge fields, whose role will eventually become clear in the context of the embedding
tensor formalism which will be introduced in due course. Together with the electric gauge
fields WMA, the magnetic duals constitute a symplectic vector, WMM = (VVMA7 W,a), where
GWM =2 8[HW,,]M . As we shall see, this relationship is, however, not exact and the iden-
tification is subject to certain equations of motion. The supersymmetry transformations
of WMM are conjectured to take a duality covariant form,

WM = e (1M + 295 XM + @ (1.7 29,7 XM (2.:26)



Observe that, with this transformation rule, the field strengths éw,M are supercovariant.
As mentioned above, G,a and 2], W, are not identical! This can be seen by calculating
the supersymmetry variation of 29, W, and showing that it only coincides with the su-
persymmetry variation of (2.23) up to equations of motion. In the presence of gauge charges
in the context of embedding tensor formalism, the Lagrangian can depend simultaneously
on electric and magnetic gauge fields, as is described in later sections.

The consistency, up to equations of motion, of introducing dual gauge fields W, is
also confirmed when considering the closure of the supersymmetry algebra, based on (2.26).
Although we started with an off-shell definition of the vector multiplets, so that all super-
conformal transformations will close under commutation without imposing the equations
of motion, this is not necessarily the case for the newly introduced gauge field W, 5. Before
discussing this in detail we present the decomposition of the commutator of two infinitesi-
mal Q-supersymmetry transformations, with parameters e¢; and e,

[6(e1), 8(e2)] = €Dy + daa(€) + 0k (Ax) + 05(1) + Sgange (M), (2.27)

where the parameters of the various infinitesimal transformations on the right-hand side
are given by

=28 'yHer; + hec.,
g = €1ley’ T“bij +h.c.,
A = €1'ey) DbTbal-j — ;) Egiyaeli D +h.c.,
n' =6en'ey’ x;
AM =4 XM &ied g + hec., (2.28)

where the first term proportional to £# denotes a supercovariant translation, i.e. a gen-
eral coordinate transformation with parameter £+, suitably combined with field-dependent
gauge transformations so that the result is supercovariant. The terms proportional to
AM denote the abelian gauge transformation acting on both the electric and the magnetic
gauge fields WMM . This result was already known for all the fields [4], except for Wa.
The validity of (2.27) on W,x can be derived in direct analogy with the calculation of the
commutation relation on WMA, upon replacing Gua by 20, W, 5.

The electric/magnetic duality transformations define equivalence classes of La-
grangians. A subgroup thereof may constitute an invariance of the theory, meaning that
the Lagrangian and its underlying function F'(X) do not change [5, 31]. More specifically,
an invariance implies

F(X)=F(X), (2.29)

so that the result of the duality leads to a Lagrangian based on F (X' ) which is identical
to the original Lagrangian. Because F(X) # F(X), as is obvious from (2.10), F(X) is not
an invariant function. Instead the above equation implies that the substitution X — X4

,10,



into the function F(X) and its derivatives, induces precisely the duality transformations.
For example, we obtain,

FA(X) = VAP Fy(X) + WasX ™,
Fas(X) = (VA  Frs + Waz) [S5s,
Frsr(X) = Feaq [STEA S22 [STH%. (2.30)

Another useful transformation rule is,

Opr = O S50 (2.31)

In section 5 we are precisely interested in this subclass of electric/magnetic duality trans-
formations, as these are the ones that can be gauged.

3 Superconformal hypermultiplets

In this section we give a brief description of hypermultiplets and their isometries, following
the framework of [32]. The ny + 1 hypermultiplets are described by 4(ng + 1) real scalars
¢4, 2(nyg + 1) positive-chirality spinors ¢* and 2(ny + 1) negative-chirality spinors (.
Hence target-space indices A, B, ... take values 1,2,...,4(ng + 1), and the indices «, 3, . ..
and @, 3,... run from 1 to 2(nyg + 1). The chiral and anti-chiral spinors are related by
complex conjugation (as we are dealing with 2(ng + 1) Majorana spinors) under which
indices are converted according to a < a.

For superconformally invariant Lagrangians, the scalar fields of the hypermultiplets
parametrize a 4(nyg + 1)-dimensional hyperkéahler cone [32-35]. Such a cone has a homo-
thetic conformal Killing vector y4,

DAXB = 5AB , (3.1)

which, locally, can be expressed in terms of a hyperkdhler potential x (in later sections
denoted by Xnyper),

XA = 0ax. (3.2)

The cone metric can thus be written as gap = Da0pyx. This relation does not define
the metric directly, because of the presence of the covariant derivative which contains the
Christoffel connection. We also note the relation

1
X = 048X X" (3.3)

Hyperkahler spaces have three hermitian, covariantly constant complex structures J;; =
Jji, satisfying the algebra of quaternions,

Jijag = (J7 ap)* = eneiJ" 4, JU 40 T g = 2€Z(k€l)J gap + W g0 4 (3.4)

As it turns out, the hyperkédhler potential serves as a Kéahler potential for each of the
complex structures.
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Hyperkéhler cones have SU(2) isometries; the corresponding Killing vectors are ex-
pressed in terms of the complex structures and the homothetic Killing vector,

k‘ijA = JijAB XB (35)

from which it follows that

Dkiig = —JY 4. (3.6)

From the above results, it follows that the homothetic Killing vector y? and the three
SU(2) Killing vectors k¥4 are mutually orthogonal,

x*xa = 2x, ki KM 4 =670, x Xk, =0. (3.7)

The hypermultiplet fields transform under dilations, associated with the homothetic
Killing vector, and the SU(2) x U(1) transformations of the superconformal group, with
parameters Ap, Agy(z) and Ay(y), respectively,

3¢ = Ap x* + Ague) 'k /¥ kit
3 1 .
6CY + 5t T A% P = <2AD — 21AU(1)>C . (3.8)

Here I' 3 denote the connections associated with field-dependent reparametrizations of
the fermions of the form (* — S%(¢) ¢ #. Naturally the conjugate connections I' 4@ ;3 are as-
sociated with the reparametrizations (& — 5'%((75) Cﬁ . These tangent-space reparametriza-
tions act on all quantities carrying indices o and &. The corresponding curvatures R4p“g
and Rap® 5 take their values in sp(np+1) 2 usp(2nm +2; C). These curvatures are linearly
related to the Riemann curvature R pc” of the target space, as we shall see later.

Before turning to the supersymmetry transformations, it is of interest to discuss pos-
sible additional isometries of hyperkéahler cones that commute with supersymmetry. They
are characterized by Killing vectors kAm(¢), labeled by indices m,n,p, etcetera. They
generate a group of motions, denoted by Gpyper, that leaves the complex structures invari-
ant so that they are called tri-holomorphic. Furthermore, they commute with SU(2) and
dilatations. These three properties are reflected in the following equations,

K m 00T ap — 20,4k T g0 =0,
kij® Dpk®m = Dpkii* kP = 1 5 kP
xakdm =0. (3.9)

Such tri-holomorphic isometries can be gauged by coupling to the (electric and/or mag-

netic) gauge fields belonging to the vector multiplets, as we shall discuss in due course.?

The total isometry group of the hyperkéhler space is thus the product of SU(2) times the

2As always, the dilatations and the SU(2) x U(1) symmetries will be gauged when coupling to the
corresponding gauge fields of conformal supergravity.
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group Gpyper generated by the Killing vectors kA.. The structure constants of the latter
are denoted by fmnP, and follow from the Lie bracket relation,?

kB om0kt — kP, 0kt m = — frnP K2y . (3.11)
The infinitesimal transformations act on the hypermultiplet fields according to

3¢t =g A" k4 (9),
8¢ + 8¢ T 4% ¥ = g A™ tm®3(9) (7 , (3.12)

where we introduced a generic coupling constant g and ¢-dependent matrices tm®3(¢) which
take values in sp(ny +1), and are proportional to D 4k ,,. Explicit definitions will be given
later, but we already note that they satisfy the following relations,

Datm® = Rag"s kP m
[tms tn]% = frn® (tp)% + kA m kB0 Rap% . (3.13)

This result is consistent with the Jacobi identity. The above results can be summarized by
noting that the linear combinations, Xn“g = d%g kAnDa—tm® 3, close under commutation
according to*

[Xm, Xn]%8 = —fmn® Xp%3. (3.14)

One can show that the curl of J¥ 45 k2, vanishes, so that these vectors can be solved
in terms of the derivative of the so-called Killing potentials, or moment maps, denoted by
1 . On the hyperkihler cone there are no integration constants, and one can explicitly

determine these potentials,

y 1 ..
Hm == k4 kA (3.15)

This can easily be verified by showing that d4u” , = J¥ 45 kP, making use of (3.9) and
the Killing equation given in (3.10). Using also (3.11) one derives the so-called equivari-
ance condition,

JIap kA kP = = frnP 1, (3.16)

The Killing potentials scale with weight w = 2 under dilatations and transform covariantly
under the isometries and SU(2) transformations,

5 = (g A" k™0 + Asu) m €™ k™) 0ap m
= ( —gA" fomP Mijp + 2ASU(2) (ik Mj)km) . (3.17)

3We note that derivatives of Killing vectors are constrained by the Killing equation, which induces
constraints on multiple derivatives, as is shown below,

Dakp + Dpka =0, DaDgkc = Rpcapk” . (3.10)

4To be precise, the X, are the generators acting on ¢-dependent tangent-space tensors (provided the
matrix tm is replaced by the appropriate generator for the corresponding tensor representation).
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So far, supersymmetry played a central role, as most of the above results are implied
by the superconformal algebra imposed on the hypermultiplet fields. We refer the reader
to [32] for a full derivation along these lines. To define the supersymmetry transformations
one needs the notion of quaternionic vielbeine, which can convert the 4(ng+1) target-space
indices A, B, ... to the tangent-space indices «, 3,...,a, 3. .. carried by the fermions. All
quantities of interest can be expressed in terms of these vielbeine. For instance, the scalar
fields transform as follows under supersymmetry,

0™ = 2(via €C7 + 74" €C%), (3.18)

where the pseudoreal quantity v:}(¢) corresponds to the (4ny + 4) x (4nyg + 4) inverse
quaternionic vielbein. Its inverse is the vielbein denoted by Vj‘@, which is needed for
writing down the supersymmetry transformation of the fermions. So we have,

_?'YJAB — 5, 5%,
VA VES + 32V =67 645 (3.19)

Here we emphasize that we use a notation (as elsewhere in this paper) where SU(2) indices
are raised and lowered by complex conjugation. The quaternionic vielbeine are covariantly
constant, e.g., B

DA’}/Z% = 8M£ + FACB’}/Z% — fAB@ fé =0. (3.20)

Observe that it is not necessary to introduce a SU(2) connection here. When coupling to
the superconformal fields, the SU(2) symmetry will be realized locally and a connection
will be provided by the gauge field Vui ; of the Weyl multiplet. The fact that the vielbeine
are covariantly constant provides a relation between the Riemann curvature R pc” and
the tangent-space curvature RAp® 3

Rapc” v — Rap’anl} = 0. (3.21)

Both curvatures can actually be written in terms of
Wf——lR A ziB . C 7D 3.22
apis = o Rapep Va5 Vs (3.22)

which appears as the coefficient of the four-spinor term in the supersymmetric Lagrangian
(cf. (4.7)).

A typical feature of the superconformal hypermultiplets is that they can be formulated
in terms of local sections A;%(¢) of an Sp(nyg + 1) x Sp(1) bundle.? This section is provided
by

A%(9) = XP(6) VEI(6). (3.23)

Obviously the vielbeine can be re-obtained from these sections, as we easily derive,
DpA* =Vg;. (3.24)

5The existence of such an associated quaternionic bundle was established based on a general analysis of
quaternion-Kéhler manifolds [36]. Here Sp(1) 2 SU(2) denotes the corresponding R-symmetry subgroup of
the N = 2 superconformal group.

— 14 —



We note a few relevant equations,

9B DsA DpA;P =c;; Q0
9B DA D AP =57 GP | (3.25)
which defines two tensors, Q% and GeP , which are skew symmetric and hermitian, re-

spectively. Obviously both tensors are covariantly constant. We also note the following
relations,

Gas Vi =€ %5 Vi® = ganrE.,
Ga° Gy = Qg
05077 = — 647,
Qup Ai%AP =¢ix. (3.26)

The first one establishes the fact that the quaternionic vielbein V{; is pseudoreal. Further-
more we note

_ 1
QupAi* DpA;P = oEiiXB +kijB
_ 1
Qup DAA® DA’ = o€ii 9AB = Jij AB

Ai@

(A4;%) =7Q" Gy A} (3.27)

Let us now introduce the local Q- and S-supersymmetry transformations of the hyper-
multiplet fields, employing the sections A;“

0A; " + 5¢BFBO‘5AZ'5 =2 QCO( + 2€ijGaBQB,—Y gjcfy ,
5<oz +5¢AFAa6<ﬁ :ﬁAia Ei +Aia i,
3¢+ 0¢AT 5P = DA ¢; + A%y, (3.28)
The Weyl and chiral weights of these sections and the fermion fields are listed in table 2.
The reader can easily verify that these weight assignments are consistent with the above

supersymmetry transformations. The bosonic parts of the covariant derivatives on the
scalar and fermion fields is given by,

1. . .
D, =0,0" — b x? + o Vi'k ek,
o o « 1 j o A «
DA =9, A% — b, A" + QVWJA]» + 9,0 T 4% A",
(0% (0% 1 a. (07 3 (07 1 (0% [0
D,C* =8,¢ - e O €& — QbMC +21AM§ + 0,0 T A% ¢P, (3.29)

where we have now introduced the superconformal gauge fields, in addition to the target-
space connections. The covariantization of the above derivatives with respect to Q- and
S-supersymmetry follows immediately from (3.28).
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Table 2. Weyl and chiral weights of the hypermultiplet fields.

An expression for the generators ¢, associated with the tri-holomorphic Killing vectors
follows from requiring the invariance of the quaternionic vielbeine Vi up to a target-
space rotation,

1 A
(tm)% = VA 75" Dk’ (3.30)

The invariance implies that target-space scalars satisfy algebraic identities such as

7?miyo’z G"yﬁ + tmfyﬁ Gdfy =0= 7?mfy[(jg QB];{ 5 (331)

which confirm that the matrices tm®g take values in sp(nyg + 1). Furthermore we note
the relations,

kAm VXZ = kAm DaA"™ = tmaﬁ Alﬂ >

1 1~
Hijm = — 2kAij kAm = _2Qa6 Aia tmﬁ'ijﬂ/ . (3'32)

For a more complete list of identities we refer to [32].

4 Lagrangians

In this section we consider the various matter Lagrangians that are superconformally in-
variant. All these Lagrangians can be found in the literature (see, e.g., [4-6, 32]), including
some of the terms quartic in the fermions. We have not eliminated any auxiliary fields,
so that the results pertain to fully off-shell couplings, with the exception of the hyper-
multiplets. In the formula below, we have substituted the explicit expressions for the
dependent gauge fields associated with Lorentz transformations, conformal boosts and S-
supersymmetry. For these expressions we refer to the appendices in [29].

All Lagrangians given below can be viewed as matter Lagrangians in a given supercon-
formal supergravity background. However, the conformal supergravity background repre-
sents dynamical degrees of freedom which will mix with the matter degrees of freedom. For
the Lagrangian of the vector multiplets, physical fields can be identified that are invariant
under scale transformations and S-supersymmetry, so that we will be dealing with super-
gravity coupled to only n vector supermultiplets. The remaining vector multiplet acts as
a compensating field: its scalar and spinor degrees of freedom are not physical and only
the vector field and the corresponding triplet of auxiliary fields remain. For the hypermul-
tiplet Lagrangians, a similar rearrangement of degrees of freedom will take place. One of
the hypermultiplets will play the role of a compensator with respect to the local SU(2).
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The precise choice of the compensator multiplets is irrelevant, and the resulting theories
remain gauge equivalent.® Therefore it is best to not make any particular choice for the
compensating multiplets at this stage and keep the formulae in their most symmetric form.
At the end one may then select fields that are invariant under certain local superconformal
transformations, so that the compensating fields decouple from the Lagrangian, or one may
simply adopt a convenient gauge choice.

The Lagrangian for the vector multiplets is decomposed into four separate parts,

Lyector = ‘cl(ir)1 + ‘61(31)1 + Laux + Leont 5 (41)

which are each separately consistent with electric/magnetic duality. We stress that this is
not a invariance property. Under generic electric/magnetic duality, one obtains in general a
different Lagrangian based on a function F'(X) that is not identical to the original function.
Only the subgroup that satisfies (2.29) constitutes an invariance. The only terms that have
been suppressed in (4.1) are quartic in the fermion fields and separately consistent with
respect to electric/magnetic duality.

The first term in (4.1) contains the kinetic terms of the scalar and spinor fields,

e ol = iy N D, XM DrXN 4 iiQMN [QMPQN — QM POIN]
L. 7Ty 7 i
— 2IQJ\/[N [Ibu @XM’)/M QZ’N — ¢m‘@XM")/M Q N] . (42)

The kinetic terms for the vector fields and their moment couplings to the tensor and

fermion fields are contained in L'(2)

kin>
1 _
e—lﬁl(jr)l — 41 [FAE FLAF* ws Fis F;;AFﬂWE]
+ [0, AT - NAE 0 0 s +hel, (4.3)

with O;V A as defined in (2.24). Here we included a term quadratic in the tensors O, such
that the resulting expression is consistent with respect to electric/magnetic duality.” Note
that one can explicitly construct the field strength tensors G, from (4.1), according to
definition (2.5). The result coincides precisely with the expression given by (2.23), as was
claimed previously.

The terms associated with the auxiliary fields YijA are given in Ly [7],

_ 1 1. _ _ _
e Lok = 8NAE (NAFYijF + 21(FAm 0" Q" — Farg riQm&ik%l))

1 _ o
X (NgEYZ]“ + Qi(FEEA Qm“QnAezmejn — Fy=a QZ“Q]A)> . (4.5)

5The hypermultiplet compensator can be replaced by a tensor multiplet, but this option will not be
considered here.
"To appreciate the presence of this term, we note that (4.3) can be written as

_ 1
e IL(Q) _

ki = 4i[FR) GTa +he] —i[07" s N¥Y(Glun — Far F ™) +hee]. (4.4)

uvA T

Modulo the field equation of the vector fields, the first term can be written as a total derivative, whereas the
second term is manifestly consistent with electric/magnetic duality as follows from (2.14), (2.30) and (2.31).
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Note that the field equations for the auxiliary fields YZ-]'A indeed imply the pseudo-reality of
Zijn, as was claimed below (2.25). The last part of the Lagrangian describes the remaining
couplings of the vector multiplet fields to conformal supergravity,

— 1 — vpo 7. i ) j v
€ 1ﬁconf = 6XVector |:R + (e 15“ pawMZVVDP¢0i - T/J;ﬁ/}u] T ij + h'C'):|

1 - . 1- .
— Xvector |:D + QwuzryﬂXi + 27;Z)uir7ﬂXZ:|

_ ( aXVector

1~ . .
At [ QM D, — QZ-AX’] +h.c.>

3

a . 1 B _ . 1 _ ..
_ ( i;;cf\or |:4€ 16“”’)"1/%%%@ Dy X + 48 ¢iu7ﬂ'YpijA TW)O} + h-C-> )
(4.6)

where Yyector = 1(XAEN — XAFY) = Ny X2X® = iQunXMXY.  Note that
aXvector/a)(A = NAEXZ-
We now exhibit the superconformal Lagrangian for hypermultiplets [32, 35],
eilﬁhyper =

1 B o 1- . .
6 Xhyper |:R + (e Tekwvp wuZ'Yquwai - 41/}!/1/}”] T‘u”ij + h.C.)]

1 1- . 1- A
+ Xhyper [D + 2¢MZ’YMX2‘ + 2¢m'7MXZ:| )

|
N =N

. __ _ _ 1 __ _
Gap DypAi’ DFA™ — Gag(CVPCT + CPPCT) = Wapss ¢ ¢

OXh 2 6w T vid
= aeh (v“‘m [3%“ Dy’ + ¢ = (b T ”} +h.c.>

I = o Y i 1 pte’ v 71 5 YN "
+ [16 Qs CV Thaige P = | CFy s (B0 Gy € + €7 Dy ()
_ L 1 _ -
+ Gap COPPP A Y, — 4e*16“”’”G@5 Vi by AiP Dy ATE 4 h.c} . (47)

where Wagys was defined in (3.22), and the hyperkahler potential was introduced in sec-
tion 3. Since this Lagrangian is superconformally invariant, the target-space geometry is
that of a hyperkahler cone, which is a cone over a so-called tri-Sasakian manifold. The
latter is a fibration of Sp(1) over a 4ng-dimensional quaternion-Kihler manifold Q%"#.
Hence the hyperkiihler cone can be written as Rt x (Sp(1) x Q).

Also tensor multiplets can be coupled to conformal supergravity (see, e.g. [37]), but
since those multiplets are not involved in the gaugings they will not be considered here.

5 Gauge invariance, electric and magnetic charges, and the embedding
tensor

Possible gauge groups must be embedded into the rigid invariance group Giigiq of the
theory. In the context of this paper, we are in principle dealing with a product group,

,18,



Grigid = Gsymp X Ghyper, Where Ggymp refers to the invariance group of the electric/magnetic
dualities, which acts exclusively on the vector multiplets, and Gyyper refers to the possi-
ble invariance group of the hypermultiplet sector generated by the tri-holomorphic Killing
vectors.® Here we first concentrate on the gauge group embedded into Gsymp, Which con-
stitutes a subgroup of the electric/magnetic duality group Sp(2n + 2;R) related to the
matrices considered in (2.7). The corresponding gauge group generators thus take the
form of (2n+ 2)-by-(2n +2) matrices 7. Since we are assuming the presence of both elec-
tric and magnetic gauge fields, these generators decompose according to Ty = (TA,TA).
Obviously the gauge-group generators Thyn' must generate a subalgebra of the Lie algebra
associated with Sp(2n + 2; R), which implies,

Trn® Qpig =0, (5.1)
or, in components,
Tra™ = =Tu s Thrpasy = 0 = T ™. (5.2)

Denoting the gauge group parameters by AM | infinitesimal variations of generic 2(n + 1)-
dimensional Sp(2n + 2;R) vectors Y™ and Z); thus take the form

6YM — —gAN TNPM YP, 6ZM - gAN TNMP ZPa (53)

where g denotes a universal gauge coupling constant.?” Covariant derivatives can easily be
constructed, and read,'®

DYM =9, YM 4+ gW, N Ty pMYP
=0, YM 4+ gW AT pM YT + gW A T M YT (5.4)
and similarly for D, Z);. The gauge fields then transform according to
swW,M =D AM = 9,AM + g T W, " A9 (5.5)

Note that, for constant parameters A, (5.5) will only be consistent with (5.3) provided
that Thn' is antisymmetric in [M N]. Nevertheless, as we shall see, antisymmetry of
Tayn® is not necessary in the general case. Rather, it is sufficient that the Ty’ are
subject to the so-called representation constraint [3],

TUED) —
QT(FA)Z _ TEAF7
Tiasr) =0,

2Tra)" =T"ar.

8Observe that the R-symmetry group, SU(2) x U(1), does not play a role here, as this group is already
realized locally in the coupling to the superconformal background.

9The generators follow by expanding the symplectic matrix appearing in (2.7) and (2.9) about the
identity. Comparing with (5.3), one establishes the correspondence, Uls = 6y — gAMTys™, AT =~
SAZ 4+ gAM Taa®, Z2% ~ —gAM Ty Was, = —gAM Taras.

10Tn this section and in section 6, we suppress the covariantization with respect to superconformal sym-
metries. Starting with section 7 the derivative D,, will indicate covariantization with respect to Lorentz,
dilatation, and chiral symmetries, and with the newly introduced gauge symmetries associated with the
fields W, ™.
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which does not imply antisymmetry of Thsn* in [M, N]. However, for the conventional
electric gaugings, where the magnetic gauge fields A,z decouple and where TANT =0 and
TA™" =0, (5.6) does imply that Trs® is antisymmetric in [T'Y].

Note that full covariance of the derivative defined in (5.4) has not yet been established
to order g2, since we have not discussed the closure of the gauge group generators. This
point will be addressed later in this section.

Let us first consider some generic features of the infinitesimal transformations (5.3).

Combining the two equations (2.10) and (2.29) leads to an expression for F'(X) — F(X),
which, for an infinitesimal symmetry transformation 6X* = —g AM Ty v XV, yields

1
Fox" == gAM (TMAEXAXE + TMAEFAFg) . (5.7)
Substituting the expression for 6X* then leads to the condition [5],
Tun9Qpo XN XP = Tyas XA X — 2Ty n "X 2 Fy — Ty " FAFe = 0. (5.8)

which must hold for general X*. The solution of this condition will specify all continuous
symmetries of the Lagrangian. There are two more useful identities that follow from it.
First one takes the derivative of (5.8) with respect to X*,

Trna XY = Fps Tun XV, (5.9)
and subsequently applies a supersymmetry transformation leading to,
Trnaf™ = Fas Tun™Q™ + Fasr Q% Tyn' XV (5.10)

The latter two identities show that the gauge covariantization of the kinetic term for the
scalars and spinors in (4.2) will not involve Thsax. We refer to [7] for further details about
these covariant derivatives.

By introducing a vector UM = (U, FyxU®), it is possible to cast (5.9) in the symplec-
tically covariant form, Ty, N9 Q P X NUP = 0. This equation can be rewritten by making

use of the representation constraint (5.6). Note, for instance, the following identities,
Touny” XM UN =0,
Tun® Qpo XM XN XY =Tyn® Qpo XM XV XP =0,
Tyun® XMXN Ny X& =0. (5.11)

As a side remark we note that the Killing potential (or moment map) associated with
the isometries considered above, is related to

Uy = gTMNQQPQXNXP . (512)

Its derivative takes the form dyvy; = iNas X, as follows from making use of (5.9).
Finally we return to the gauge transformations of the auxiliary fields YijA, which can
be derived by requiring that L, written in (4.5) is gauge invariant. A straightforward

calculation leads to the following result,

1
6Yz‘jA = _29AMTMNA(ZZ‘J'N + €ik€jil ZklN) , (5.13)
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where Z;;M was defined in (2.25). Note that this result is in accord with the elec-
tric/magnetic dualities suggested for ZijM .

In the remainder of this section we consider the gauge group embedding in more detail.
The embedding into the rigid invariance group Giigia = Gsymp X Guyper 18 encoded in a so-
called embedding tensor. This tensor must be specified separately for the vector multiplet
and for the hypermultiplet sector, so that we have the following definitions,

P P
Tun' =O0nmtan

E =00k, Tu®s = Ou™tns, (5.14)

where the ¢, denote the generators of Ggymp, and kA, and t, the tri-holomorphic Killing
vectors and the corresponding matrices of the group Gpyper. Because these generators be-
long to different groups and act on different multiplets, they carry different indices (namely,
indices M, N, ... for the vector multiplets and indices «, (3, ... for the hypermultiplets). The
embedding tensor can be further decomposed into electric and magnetic components, ac-
cording to O3/ = (0,2,042), and O™ = (0,™,0*™). With these definitions, we can
now also present the gauge-covariant derivatives on the hypermultiplet fields (we remind
the reader that in this section and in the next one, we suppress the covariantization with
respect to the superconformal symmetries),

’D,ugbA = aﬂ¢A - QW,uM kAM >
DuA® = 0, A% + 9,0 T a5 A — gW, M Ta® 5 A
Dyl =0,C* + 0,0 T u% ¢F — gW, M T ¢P (5.15)
In particular the covariant derivative of the spinor field is not entirely straightforward, in
view of the fact that matrices ¢t,,“3 depend on the fields . However, because the Jacobi
identity is satisfied on these matrices, there are no further complications associated with
this feature (see (3.13)).

The gauge group generators Tj; should close under commutation for both representa-
tions. This leads to two equations that depend quadratically on the embedding tensor [38],

fabOn2 ON® + (ta) N OO =0,
fon® Ou™ ON" + (ta)n" ©12OpP =0, (5.16)

where f,p¢ and fmnP are the structure constants of Ggymp and Guyper, respectively.!! The
above equations imply that the gauge algebra generators close according to

[T, Tn] = —Tun" Tp kB yiopktn — kB nopky = Tunt kK p, (5.17)

so that the structure constants of the gauge group are contained in —Tyny? =
—01/2 (ta)nT, as is required by the gauge group embedding in Ggymp- This observation was
in fact used as input when deriving (5.16). Note, however, that the gauge group structure

"For convenience we have ignored that the matrices tm depend on the scalar fields (see, (3.14), and the
preceding text).
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constants are not necessarily identical to —Tyn’, as they may differ by terms that vanish
upon contraction with the embedding tensor ©p? or © p™. This explains why the Th;n'
are not necessarily antisymmetric in M, N.

Here and henceforth, the embedding tensor will be regarded as a spurionic object
which we allow to transform under the rigid invariance group Gyigiq, so that the Lagrangian
and transformation rules will remain formally invariant. Therefore the embedding tensor
can be assigned to a (not necessarily irreducible) representation of Gyigiq. Eventually the
embedding tensor will be frozen to a constant, so that the invariance under Gyigq will
be broken. In this context, it is relevant to note that (5.16) implies that the embedding
tensor is invariant under the gauge group. The gauge group is thus contained in the
corresponding stability subgroup of Gyigiq. From symmetrizing the first constraint (5.16)
in (M N) and making use of the linear conditions (5.6) and (5.1), one further derives that
OMN 9,20 (t,) p? must vanish. Hence,

QMN 920N = 0 «—= 02k, =0, (5.18)

which implies that the charges in the vector multiplet sector are mutually local, so that an
electric/magnetic duality must exist that converts all the charges to electric ones. Likewise,
one derives from the second constraint (5.16),

QYN @ o™ = 0 — Ore,m =90, (5.19)

which implies that the charges in the hypermultiplet sector are mutually local with the
vector multiplet charges. It is clear that gauge fields that couple exclusively to charges
associated to hypermultiplets are not restricted by (5.18) and (5.19). Their corresponding
gauge groups are necessarily abelian. To ensure that those charges are also mutually local,

we must impose an additional constraint,
QMN gymON" = 0 «— ©rmg," =0, (5.20)

which is obviously not related to the closure of the gauge algebra. As it turns out, the
relations (5.18), (5.19) and (5.20) play an crucial role when discussing the Lagrangian.

Generically only a subset of the gauge fields will be involved in the gauging, so that
the embedding tensor will project out a restricted set of (linear combinations of) gauge
fields; the rank of the tensor determines the dimension of the gauge group, up to possible
central extensions associated with abelian factors.

As stressed before, the generators Thyn' are not required to be antisymmetric in M, N.
The symmetric part can be written as follows,

Touny” = 2" daiw (5.21)
with
_ P
damyn = (ta)m” Qnp,
Aa_ 1A
Zho— lote,

1
ZAa:_QGAa )

ZM’aE;QMN@Na = { (5.22)
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so that d, sy defines an Sp(2n + 2, R)-invariant tensor symmetric in (M N). Likewise one

ZM,m

can introduce a similar tensor , relevant for the hypermultiplets, by

1 ZAm: 1®Am ’
ZMm = “qMNg,m 2 (5.23)

2 ZAm:_ %eAm )
Subsequently we note that the constraints (5.18), (5.19) and (5.20) can now be written as,
Moyt =0=220y™,  ZMmeyt=0=2""oy". (5.24)

The latter implies that Z2 and ZM'™ vanish when contracted with the gauge-group
generators Ths. Because of these constraints, only the antisymmetric part of Thyn? will
appear in the commutation relation (5.17). What remains is to consider the Jacobi identity
on the generators Ths. Explicit calculation based on (5.17) leads to

2
Tinvp" T = 3 ZM2 dypin Tpgy™ (5.25)

which shows that the Jacobi identity holds up to terms that vanish upon contraction
with the embedding tensor. In the following section we will describe how to introduce a
consistent gauging in this non-standard situation.

6 The gauge hierarchy

To compensate for the lack of closure noted in the previous section, and, at the same
time, to avoid unwanted degrees of freedom, the strategy is to introduce an extra gauge
invariance for the gauge fields, in addition to the usual nonabelian gauge transformations,

sw,M =D A —g[ZM2E,, + ZMME, ], (6.1)

where the AM are the gauge transformation parameters and the covariant derivative reads,
DMAM = 8MAM + ngQM WMP A®. The transformations proportional to Eua and Z
enable one to gauge away those vector fields that are in the sector where the Jacobi identity
is not satisfied (this sector is perpendicular to the embedding tensor by virtue of (5.24)).
Note that the covariant derivative is invariant under the transformations parametrized by
E.a and E, m, because of the contraction of the gauge fields WMM with the generators T}hy;.
However, gauge transformations do no longer form a group by themselves, as is reflected
in the commutation relation,

[0(A1),6(A2)] = 6(A3) + 6(Zas), (6.2)
where
A =g Tinp M AYAY
Esua =danp(AY DAY — AYDLAT), (6.3)
with Thza® = —03/ fea® the gauge group generators in the adjoint representation of Gsymp-

As it turns out, this commutation relation forms the beginning of a full hierarchy of vector
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and tensor gauge fields that form a closed algebra [39, 40]. Other commutators involving
§(A), 5(Z5) and () vanish on the gauge fields W,*, so that those can only be uncovered
for the higher-rank tensor gauge fields that we will introduce shortly.

Non-abelian field strengths associated with the gauge fields WMM follow from the Ricci
identity, [D,,D,] = — gfwM T, and depend only on the antisymmetric part of Thn?,

Fu =0, WM — o, WM+ g Tinp)M W,NWLP (6.4)

Because of the lack of closure expressed by (5.25), these field strengths do not satisfy the
Palatini identity,

5leM - 2’D[ﬂ5WV]M — 29 T(pQ)M W[“P 5W,/]Q 5 (6.5)

under arbitrary variations 5WﬂM , because of the last term, which cancels upon multipli-
cation with the generators Tps. The result (6.5) shows in particular that F,,* transforms
under the combined gauge transformations (6.1) as

5Fu™ = g AP Ty p™ Fu™¥ — 29 ZM2 (DY, E s + dapg Wi,T 0W,9) — 29 ZM™ DBy
(6.6)
and is therefore not covariant. In deriving this one makes use of the fact that the tensors
ZMa and ZM™ are invariant under the gauge group. The covariant derivative on =, is
defined by D,=,, = 0,5,a — gWMMTMabE,,b, and similarly for =,,. These tensor fields
belong to the adjoint representation of the group Ggymp.-
The standard strategy is therefore to define modified field strengths,

Huw™ = Fu™ +9[ZM° Bya+ ZM"™ Buym] | (6.7)

by introducing new tensor fields B,,, ; and B, m with suitably chosen gauge transformation
rules, so that covariant results are obtained. This implies that the variation of the tensor
fields should in any case absorb the unwanted non-covariant terms in (6.6). At this point
we recall that the invariance transformations in the ungauged case transform on the field
strengths G, ™, defined in (2.6), according to a subgroup of Sp(2n +2,R) (cf. (2.7)). The
field strengths G WM consist of the abelian field strengths F] WA and the dual field strengths
Guva- The latter were decomposed in (2.23) in the form G;uA = Fixs Fljy2 - QiO;UA.
Obviously, in the presence of the non-abelian gauge interactions, the abelian field strengths
FWA should now be replaced by (6.7). Hence it is natural to define new covariant field

G = <H"”A> (6.8)

strengths according to
guuA
with
- A — A
G =M™
Goon = Fas Hp, ™ — 210, . (6.9)

Just as in section 2, there exist corresponding supercovariant field strengths QHVM that
will appear in the supersymmetry transformations of the vector multiplet fermion fields.
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Those will be discussed in the next section. Just as before, the field strengths QHVM and
gWM will only differ by fermionic bilinears and by terms proportional to the tensor field
of the Weyl multiplet.

Following [3] we subsequently introduce the following transformation rule for B, and
Bym (contracted with Z Ma and ZM:™  respectively, because only these combinations will
appear in the Lagrangian),

ZM2 6By s =222 (DE e + danp W,V oW, ) — 2T (np M AP G Y,
ZMM 5Buym =22 Dy E - (6.10)
Note that By, , has variations proportional to Z,m, through the term W, (cf. (6.1)).

As a result of (6.10) the modified field strengths (6.7) are invariant under tensor gauge
transformations. Under the vector gauge transformations we derive the following result,

G, = — g A Tpn" G, N — g APT  p2 (G — Hou )
6G = — 9N Tpya G N — g Fas NPT p™ (G, — Hy )

7%
0(Gpy = Hpu)a =g A (T" pp =TT p” Fup) (G — Hp)r - (6.11)
Hence 5QWM = —g AP TpyM QWN , just as the variation of the abelian field strengths

GWM in the absence of charges, up to terms proportional to @Ava(g,w —Huw)a- According
to [3], the latter terms represent a set of field equations, and so the last equation of (6.11)
expresses the well-known fact that, under a symmetry, field equations transform into field
equations. As a result the gauge algebra on the tensors GurM closes according to (6.2), up
to the same field equations.

In order that the Lagrangian corresponding to (4.1) becomes invariant under vector and
tensor gauge transformations, we have to make a number of changes. First of all, we replace

the covariant derivatives on the scalars and spinors by gauge-covariant derivatives. This
(1)
kin>’
The Lagrangian for the auxiliary fields (4.5) is already gauge-invariant. In the following

ensures the invariance of £, , Leont and Lyyper, given in (4.2), (4.6) and (4.7), respectively.

we therefore concentrate on £\2) (4.3) which depends on the abelian field strengths FWA.

kin

These abelian field-strengths are now replaced by H,,,*, so that

w'
Gw A = 1€ Epo %ﬁ;‘j}f : (6.12)
The Lagrangian El(jr)l therefore reads,
e 1L — ii [Fas Hp M= — Fys HAHTS]
+ [0, \H A = NV O, 07" +hiel] . (6.13)

It is separately invariant under the tensor gauge transformations, because the tensors H
are invariant.

However, the Lagrangian (4.1) is not invariant under the vector gauge transformations.
To establish this one has to take into account that also the other fields of the vector
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multiplets transform under the gauge group. For instance, there are contributions from
infinitesimal gauge transformations of Fay, and O,,,a, which follow from (2.30) and (2.31),

5Fps = gAM (= Tuas + 2T Fsyr + FarTy' = Fex)
80,0 =gA" O (Tvia™ + Tar™ Fra) - (6.14)
Nevertheless, it was shown in [3] that this is still not sufficient for gauge invariance, and it
is necessary to introduce an additional, universal, term to the Lagrangian, equal to,

1
Ltop = Sig ghvPe (@Aa B,uua + @Am B;w m)
1 1

X <2 apWO'A + gTMNA WpMWJN - 499Abeab - 4g@Aana n>

1
+ 3ig €‘LWPJTMNA W“MWVN <8pWoA +

1
+ 610 P Ty w,Mw, N (apw(, A+

gTPQAWpPWJQ>

N

gTPQAWpPWO'Q> . (615)

The first term represents a topological coupling of the anti-symmetric tensor fields with
the magnetic gauge fields; the last two terms are a generalization of the Chern-Simons-like
terms that were first found in [6].

Under arbitrary variations of the vector and tensor fields, (6.13) and (6.15) yield (up
to total derivative terms),

et (0LEN+0Lip) = = g (G = HIM) O3 (6B — 2dapW, "W, )

1
4
1
_ 4ig (ng;wM _ HJr,ul/M) oOy™ 5B;wm

+iG MOy N D WY +hee. (6.16)
Under the tensor gauge transformations this variation becomes equal to,

e (L) + 6L1op) = igH M [O1*DyEra + Oar™DySom] + hioc.. (6.17)
We already demonstrated that El(jr)l is separately invariant under tensor gauge transfor-
mations, so that the above terms originate exclusively from the variation of Lio,. The
expression (6.17) turns out to be equal to a total derivative because there exists a Bianchi
identity,

1
39[ZM73 Huvpa + 2T Huvpm] (6.18)

and because the embedding tensor is gauge invariant. Here the gauge-covariant field

M
DyHup ™ =

strengths of the tensor fields are defined as,

1
Huupa = 3D[uBup} a Tt 6danp W[MN <8VWP}P + 3gT[RS}PWVRWp}S + (g - H)Vp}P> )

Huupm =3 D[pByp} m > (619)
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where D, B,,a = 0uBupa — gWﬂMTMabB,,pb, and likewise for D, B, ,m. The fully gauge-
covariant derivative of HWM takes the form,

DpH,ul/M = apH;wM + ngP TPNM g,uz/N + ngP TNPM (g - H);WN
=0 Hu™ + gW, " Ton™ Hw™ +29W,F ZM2dpn (G — H)W™,  (6.20)
Observe that the covariantization proportional to (G — H)WN is not generated by par-
tially integrating the right-hand side of (6.17), but it vanishes upon contraction with the
embedding tensor. So does the right-hand side of (6.18), so that (6.17) is indeed a total
derivative.

As was mentioned before, the combined gauge invariance of the vector and tensor
gauge fields are important to ensure that the number of physical degrees of freedom will
not change by the introduction of the magnetic vector gauge fields and the tensor gauge
fields [3]. The combined gauge algebra is consistent for the tensor fields upon projection
with the embedding tensor, which is sufficient because the action depends only on these
projected fields. If this were not the case, new tensor fields of higher rank would have been
required [39]. The projection with the embedding tensor will determine in which fields the
physical degrees of freedom can reside. The precise way in which the number of physical
degrees of freedom are accounted for is therefore rather subtle. From (6.16) it is indeed
clear that the components of the tensor fields that are projected to zero by multiplication
with ©42 or @A™ are simply not present in the action. Their absence can be regarded as
the result of an additional gauge invariance. In addition, there are transformations of the
tensor fields linear in (G — H),a that leave the Lagrangian invariant [7, 13],

@AaéBuua = A[lAE] (g - H):}/E +he.,
@AB(SB,uua = AgAE)p[,u (g - H)I/]pE ) (621)

where Ajl\z is an arbitrary complex parameter, and Agzp u is real and traceless. Similar
transformations exist for variations contracted with ©*™. Often these transformations
emerge when verifying the validity of the supersymmetry algebra, something that we will
discuss in section 7.

A similar situation arises with the magnetic gauge fields W,z. Under variations of the
gauge fields WﬂM one derives,

n

1
5[’1(3) + 5[’t0p = 2i€MVPU DugpaMQMN(SWMN, (622)

where El(jr)l was defined in (6.13), up to a total derivative and up to terms that vanish as a
result of the field equation for B, ,. Substituting (6.18) we can rewrite (6.22) as follows,

n

1 1
SL + 0Liop = H1E"7 |=DuGpon Wi + 9(Hupra O™ + Hoppom O°)0Wian | . (6.23)

Because the minimal coupling of the gauge fields to matter fields is always proportional to
the embedding tensor, the full Lagrangian does not change under variations of the magnetic
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gauge fields that are projected to zero by the embedding tensor components ©42 or @A™,
up to terms that are generated by the variations of the tensor fields through the ‘universal’
variation, 0B, = 2daPQW[MP(SWV]Q.

All these gauge symmetries have a role to play in balancing the degrees of freedom.
In [3] a precise accounting of all gauge symmetries was bypassed in the analysis. Observe
that not all these symmetries have a bearing on the dynamical modes of the theory as they
also act on fields that only play an auxiliary role.

7 General gaugings: the superconformal algebra and the Lagrangian

When switching on a gauging there are several qualitative changes that are of interest. First
of all, the superconformal algebra will no longer be realized off shell (i.e. without using the
equations of motion) in the vector multiplet sector, at least for gaugings with magnetic
charges. Only for the Weyl multiplet the closure remains realized off shell. Naturally
a generic gauging induces the presence of vector multiplet fields into the hypermultiplet
supersymmetry transformations. It is therefore not surprising that also the vector multiplet
transformations will generically acquire terms proportional to the hypermultiplet fields. In
this section we will present the full transformation rules that include new terms of order
g, and subsequently we will re-establish the closure for general gaugings. As it turns out,
additional symmetries such as (6.21), are relevant for the closure. This feature is well
known from previous applications of the embedding tensor formalism.

A second, not unrelated, feature is that the Lagrangian must be modified by including
masslike terms for the fermions proportional to g, and a scalar potential proportional to
g*>. The explicit expressions for these terms, which are relevant for many applications,
will be presented at the end of this section. These modifications are familiar from N = 2
supergravity theories with purely electric charges [4, 6, 32].

Rigid N = 2 supersymmetric theories with both electric and magnetic charges, have
been presented in [7], and it remains to complete these results in a fully superconformal
setting. It is clear that the modification of the results derived in [7] must be relatively
minor. The supersymmetry transformations of the matter fields will now become covariant
with respect to the superconformal symmetries, while at the same time they should remain
in accord with the known results for rigid theories. Modifications that supersede previous
work will therefore mainly involve terms proportional to the gravitino fields. The most
conspicuous ones are those appearing in the supersymmetry transformations of the tensor
fields B,,a and Bjym.

To exhibit this in more detail, let us first present the full Q- and S-supersymmetry
transformations for the hypermultiplet fields. They follow straightforwardly upon super-
covariantizing the rules presented in section 3, including the terms of order g that were
already found in [7],

0t =2 (via €C% + 75" @)
JA® + 06T 49547 =2&(* +26,;GPQ (7,
(5Ca + (5¢A FAalg CB = lDAia Ei + 2gXM TMaIgAZ"G e’;“ijej + Aia ni . (71)
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where D,, denotes the derivative fully covariantized with respect to all the superconfor-
mal transformations and the gauge symmetries. Likewise we present the full Q- and S-
supersymmetry transformations for the vector multiplet fields,

XM =M,
QM =o2pxMe; + Z;;Mel + ;’YWQA;uMgijej
— 29 TpnM X XN e + 2igQMN pyined +2XMn;
SWM = e (4, ™M + 248, XM + 458 (1, 0 M 4 24,7 XM
0¥ =26 P2" + 2eine e POV
—4g TMNA [Q@Mekaj)k XN QkME(iffj)k XN}

+4ig kM e 1)aa€ ¢ + e €5C Th Al - (7.2)
Here the moment maps are defined by,
MM = O™ fijm (7.3)

and the symplectic vector Zl-jM appearing in 6;M is given by,

A
ZM = ( N > : (7.4)
Fas Yi® = Y Easr QP50 + 2ig[pija + Fas pij”)

This expression differs from the previous one for the ungauged theory, given in (2.25),
by the presence of the moment maps originating from the hypermultiplet sector. This
implies that the original pseudo-reality condition on Z;;5 must be replaced by a pseudo-
reality condition on Zij A- As this condition was previously imposed by invoking the field
equations for the auxiliary fields, it follows that those field equations must now receive
modifications proportional to the moment maps, as we shall confirm later in this section.
Note that, in (7.2), we refrained from giving the supersymmetry transformation of Zij A
which is not an independent field.

Another tensor appearing in 62, a modification of the tensor (2.21), is the super-
covariant field strength QHVM , which coincides with the field strengths (6.8) up to fermion
bilinears and terms proportional to the tensor field of the Weyl multiplet. These superco-
variant field strengths are defined by,

G =M
5 o 1 ~ g
g;u/A = Fas H;WE - 8FAEF QiE’YuVQjF e . (75)

where ﬂu,,A is the supercovariant extension of (6.7). In view of (2.2), we expect the
following decomposition for 7:[#,/\,

ﬂ,ul/A :H;WA - eijqzz[,ui(ryl/}QjA + ¢u]jXA) - eijqzz[pi(%/]QjA + ¢u]jXA)
1

4(XA T;wij €ij + XA T“,,ij eij) . (76)
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However, in the presence of a gauging, this expression leads to supersymmetry variations
proportional to the gravitini fields induced by the terms in §Q;* of order g. As it turns
out, by suitably adjusting the supersymmetry transformations of the tensor fields, 0B,,,,
and 0B,,m, one can ensure that the Hop will still transform covariantly under Q- and
S-supersymmetry,

Ha™ = — 2655 @4 Dy — 29 Tinvp) " XN 4 yape’

— 2ig k™ yaia C*Yave’ — €7 Mivap Y™ + hec. . (7.7)

As a result the combined transformations of the tensor fields, B, and B, m, under tensor
and vector gauge transformations and Q- and S-supersymmetry, now read as follows,

ZM2 6By 2 =2 2Dy E s + 2 Tivpy ™ WV oW, 7 — ANGL T

-2 T(NP)M [XNQiP’Yuuei +XNQiP7uV€i +2 xXNxP (gif)/[pwu]i"i_gi’)/[uwu}i)] )
ZM™ 5By m =2 2™ DYy — YV EA N [Yaia e’ — Fiag CVurei]

+ 41 QMY e e [y + DR pnal - (7.8)
Note that the tensors transform covariantly under diffeomorphisms, and are scale invariant.
As was already alluded to, the moment maps p;;3 enter the transformation rules of the
vector multiplet fields. In fact, only the magnetic moment maps mjA appear in these
transformation rules.!? For purely electric charges and corresponding moment maps HijAs
the supersymmetry transformations (7.1) and (7.2) reduce to the transformations presented
in [6] and [32]. The latter transformations still realize the supersymmetry algebra for the
vector multiplet fields (but not for the hypermultiplet fields) without the need for imposing
equations of motion.

Now that the full supersymmetry transformations have been established, we consider

the superconformal algebra. Its most non-trivial commutation relation is the one of two Q-
supersymmetries. This commutation relation, which was already specified in (2.27), must
now be extended with tensor gauge transformations. Hence

[6(e1), 6(e2)] = &" Dy + Sar(e) + S (Akc) + I5(1) + Sgauge(AM)
+ 5tensor (E,ua) + 5tensor (E,u m) 9 (79)

and it should hold modulo field equations and some of the spurious symmetries that we dis-
cussed in the previous section. The various parameters in (7.9) have already been specified
in (2.28), except for the parameters of the tensor gauge transformations, which read,

E,ua = - 2daNPXNXP£,u )

Eum = — 8i€ijujkm (Egi’yuqk + Egk’yueh‘) R (7.10)
up to terms that vanish upon contraction with the embedding tensor.'® The combination
§#D,, denotes an infinitesimal covariant general coordinate transformation, which includes

2The reader may verify that the contribution to ;™ proportional to u;ja vanishes against a similar
contribution contained in Zj M

13The result for Z,m given in (7.10) is new compared to previous work. It is determined by verifying the
commutator (7.9) on the vector and tensor gauge fields, as will be discussed in some detail below.
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contributions from all the field-dependent gauge transformations such as a Q- and S-
supersymmetry transformation with parameters —%f”?/)pi and —%qubpi, or vector gauge
transformations with parameters AM = —f”WpM , such that the combined result takes a
supercovariant form. For the corresponding field-dependent tensor gauge transformations,
the parameters take a slightly more complicated form [7, 13],

Epa = — 13 (Bpua + daNPWpNWuP) )
Eum=—&Byum . (7.11)

In what follows we will verify the validity of (7.9) on the auxiliary fields YZ-]'A, WﬂM
and the tensor fields B,,, and B,,m, as these are most susceptible to the presence of
the new gauge transformations, thereby exhibiting a variety of subtleties that play a role.
Many aspects of this evaluation have their counterpart in a similar evaluation of N = 8
supergravity, which appeared in [13]. At this point we mention two general identities that
are relevant in the present calculations. They follow from (5.9), (5.10) and (5.11),

. 1 _ .
Touny" XM 2N = 5 Touny” QMY = 2igT v P XM QAN 54,

. 1 o
T(MN)PXMQW,N = ) T(MN)Pc?Z] QZ‘M’)/W,Q]'N . (712)

Of course, in the calculations we must also take into account that the superconformal gauge
fields, wuab, ,¢ and gbﬂi, depend on the other superconformal fields.

Let us first consider the supersymmetry commutator (7.9) on the auxiliary fields Y;;.
As it turns out, its validity requires to impose the field equations associated with the tensor
fields, which take the following form,

(_)Aa guuA = (_)Aa HMVA s @Am guuA = (_)Am HMVA ) (713)

and the field equations associated with the magnetic gauge fields,
0= ée—leuupa (ZA’aHupoa + ZA’mHupom) + T(MN)A< _9 XM ZH)“XN
+ QM QN 4 XMy it QN — XMyt QN — ;6*16“”””1/%pr XMXN )
+iGas T, <;Aio‘ DHAY — 20091 + iy (AT — wun“v”C”Ai“>
— ie_le“”paﬁyiyquojejkmk/\ , (7.14)

where we made use of the Bianchi identity (6.18).
Secondly we evaluate the supersymmetry commutator on the vector fields WHM ,

[6(61)’ 6(62)]W/JM = é—pgpﬂM + D“AM —4g ZM7a Eﬂa —4q ZM’m Eﬂm

1 - I
—£p <2 €ij prl’yﬂQ]M _|_6inwa1¢“] —|—hC> , (715)
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where the parameters &4, AM Zua and E,m are as in (7.9). In this result one can replace
gWM by HWM . For the electric gauge fields this is trivial as QWA and HWA are identical.
For the magnetic gauge fields the replacement is effectively allowed because W, appear
in the Lagrangian contracted with the embedding tensor, as can be seen from (6.23).
Therefore, without loss of generality, one can safely contract (7.15) for the magnetic gauge
fields with the embedding tensors, ©42 or ©A™ upon which one can replace Guwn with
Huwn by virtue of (7.13). Finally one uses the following equality,

§pHpuM = §paquM + 8M§prM — Dy (ngpM)
+ gZM2P (Bppa + danpW," W, T) + gZM P B (7.16)

Substituting this identity into (7.15) shows that the &#-dependent terms decompose
into a general coordinate transformation with parameter £, a non-abelian gauge trans-
formation with parameter —§“WMM , tensor gauge transformations with parameters
—&r (BWa + d, NPW;VWE) and —§B,, m and a supersymmetry transformation with pa-
rameter — ;{“wm. Together they constitute a covariant general coordinate transformation
with parameter £#. Consequently the supersymmetry commutator closes according to (7.9).
Subsequently we turn to the supersymmetry commutator on the tensor fields B, ,.
Here it suffices to consider those fields contracted with Z*? because no other components
of the tensor field appear in the Lagrangian according to (6.16). Hence, we first evaluate

7% [6(e1), 6(€2)) Buva
=27 DyE — 2Ty A G Y
+ 2T(MN)A W[MM [0(€1),0(€2)] WV}N
+ T(MN)Afp (XMQZ‘N%ﬂ/’pi - 27:5pi7[u¢V]i XMXN 4 h'C-)
+ €Eupo T(MN)A§p< —oxM QH)"XN + QMo N
+ XM i AN — XMy QN — ;e_le"”“zl_w%%i XMxN >
+ 1619 T *QMP (XN 1 p eiyer; — XN pigp @vue]) (7.17)

with the parameters ¢, AM and Z,,, as in (7.9). The first four terms can straightforwardly
be compared to the variation of By, given in the first formula of (7.8). However, there is a
subtlety regarding the commutator on W,~ in the third term, because this supersymmetry
commutator only closes on the gauge fields, up to a term £°(G — H) pl,N . Therefore the
commutator yields the transformations indicated on the right-hand side of (7.9) plus this
extra term.'* Obviously the commutator on W, generates also a diffeomorphism, which

14 Upon contraction with Z* 2 this term vanishes and we have argued that it could therefore be suppressed
in the commutator on the gauge fields on W,”™. See the text preceding (7.16). However, in the case at
hand the extra term has to be retained.
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will play a role later on in the calculation. Finally the fourth term represents precisely a
supersymmetry transformation with parameter ¢ = — ;gw,}.

The remaining terms in (7.17), however, do not seem to have a role to play. At this
point we note that the Lagrangian does not depend separately on Z A’E‘BW aand Z A”“BW ms
but depends only on the linear combination Z*-2 Buya + ZAm Biym- Consequently, the
algebra is required to close only on this linear combination. Therefore we also evaluate the
commutator on ZAm Buym,

A A —
7 ,m [(5(61), (5(62)]Buym =927 7mD[,u‘:‘l/}m
+i¢g” (kAA YAia 6a7uuwpi - 2€ijujkA1/;i[u’yy}¢pk — h.c.)
— 16 igT(MN)AQMP (XN 1 p &ypwer; — XN pijp Eé%uﬁ{)
i 14 AB 1 ia ~No y OO Y
+iecupes” | GagT™", 2A DAY —2(%C
+ &Ai,ya,y)\C&Ai’y _ w}\i,ya,yAC'yAioz>
— €T Py e kﬂikA] : (7.18)

with the parameters £# and Z,m as in (7.9). The first line establishes closure with respect
to E,m. Furthermore, the next line correctly reproduces a supersymmetry transformation
with parameter ¢’ = —ggﬂw,}.

When considering the sum of the two variations (7.17) and (7.18) there are some
cancelations, and on the remaining terms we can impose the field equation (7.14). This
leaves the following terms,

[6(e1),6(e2)] (ZA’a Bwa+ zhm B m) =74 " Huvpa + zhm & Hywvpm
— 2Ty W, M EP(G —H),, N+, (7.19)
where the dots refer to terms that have already been accounted for in the context of (7.9).

The explicit terms in (7.19) contribute to the (covariant) general coordinate transformation,
as follows from the following identities, which can be derived straightforwardly from (6.19),

AN Hppwa = z (€7 0pByva — 2 a[ungV]pa)

+22%°Dy, (67B,)pa — £da v W, MW, )
+2 T(MN)AprngWN
= 2T0uny " Wi M (€0 W™ + 0,6 W, N —26°(G —H),,Y)
~ 29 Tuny 2" W Bl

zhmep Hppwm = zhm (€7 0pBuvm — 2 a[ungV]ﬂm)
+2Z%" Dy, (€ B,y m)
+29 Ty 2™ W, By - (7.20)
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The first two terms in the equations (7.20) denote the expected general coordinate trans-
formation, and the tensor gauge transformations with parameters given in (7.11). The
third term in the first equations represents the appropriate gauge transformation. The last
terms in the two equations cancel directly, so that the only terms in (7.19) that are still
unaccounted for, are given by

[6(€1),0(e2)](Z™ Buva + ZM™ Buym) = — 2Tauny Wi, M (€20, W™ + 0,67 W, V)
+ 2T(MN)AW[MM§p(g - H)V]pN +oee (7'21)
The first of these terms cancels against the general coordinate transformation induced by
the supersymmetry commutator on W,V in (7.17), which we already referred to earlier, and
which is not required on the tensor fields in view of the fact that the above equations (7.20)
already account for the general coordinate transformation. The second term can be sup-

pressed by virtue of the special invariance noted in (6.21). To see this, we note that, up to
the first equation of motion (7.13), we can write the induced variation of B/, as,

Z8 6B e o TW ™ [P, M — oW, M 301G = H)upm
— T E e WM (G — H) s (7.22)

This completes our discussion of the supersymmetry algebra.

Finally we summarize the modifications to the Lagrangian that are required by the
general gaugings. As usual these concern both masslike terms for the fermions, which
are proportional to the gauge coupling g, and a scalar potential proportional to ¢g>. The
masslike terms independent of the gravitini follow directly from the rigid theory in the
presence of both electric and magnetic charges [7]. The terms that involve gravitini are
generalizations of the known results for the superconformal theory in the presence of electric
charges [4, 6, 32]. The result includes also a non-fermionic term which describes the
coupling of the auxiliary fields YijA to the moments 1157,

_ 1. o
e Ly =~ o9 QuTrn® e’ XNQM (7 + 444, X7) + hee.
+ 29 kanviae? (M + yHah XM + hee.
+ gﬂijM T;E,uz' (’Y“QJ‘M + ’)/W/T/)VJ'XM) + h.c.
+ 29 [XMT007 0 D5, CO¢7 + XM T 75 05, 87
1 o _ o
- 49 [FAEF MUA QiEQjF + Fasr MijA QZEQ]F]
A 1 - >
+g Y A + 2(FAZ + Fas) i~ | - (7.23)

Upon solving the auxiliary fields YZ-]'I one obtains an additional contribution to the scalar
potential of order g2. Without this contribution the scalar potential reads,

671£g2 2192 QMN TPQMXPXQ TRSNXRXS

_ 1 3
—2¢° kA ) kB gap XMXN — 292 Nas ,uijA i (7.24)
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Upon eliminating the auxiliary fields, the last term in this expression changes into

1 iy - - _ -
- 292 Nas pig g — —24 (147§ + Fap 5] NA¥ (ijs + Frz pi~ - (7.25)
The above expressions are not of definite sign. From the Lagrangians in section 4
one can deduce that Xvector; Xhyper and the metrics that appear in the kinetic terms of
the physical scalar fields should be negative. The latter metrics are proportional to two
matrices, Mas; and G 4p, that should therefore be negative definite. They are defined by

M5 = Xvertor (NaxNrz — NarNsz) X1 X5,
_ _ 1 s
Gap = thlper <9AB - thlper <2XAXB + kAijkB”>> . (7.26)

With these observations we can separate the terms in the potential in positive and nega-
tive ones,

671£g2 = - 92 Xvector MI\E (TPQAXPXQ) (TRSEXRXS)

—4 92Xvector kAM kBN Gap xXMxN

— 2 g% Xvector Mg N™T (10 + Fro ,uijg] N*= [z + Fea MijA]

-6 92X;elctor XMXN MZ]M ,U'UN ) (727)
where we used that Xnyper = 2 Xvector; @s is implied by the field equation associated with
the field D. It then follows that all contributions to L2 are negative, with the exception
of the last term which is positive. This decomposition generalizes a similar decomposition
known for purely electric charges.

8 Summary and some applications

In this paper we presented Lagrangians and supersymmetry transformations for general
superconformal systems of vector multiplets and hypermultiplets in the presence of both
electric and magnetic charges. The results were verified to all orders and are consistent
with results known in the literature based on both rigidly supersymmetric theories and on
superconformal systems without magnetic charges. In the presence of magnetic charges
the off-shell closure of the superconformal algebra is only realized on the Weyl multiplet.
The results of this paper establish a general framework for studying gauge interactions in
matter-coupled N = 2 supergravity.

In the remainder of this last section we discuss two specific applications to demon-
strate the consequences of this general framework. The first one discusses full and partial
supersymmetric solutions in maximally symmetric space-times, and the second one deals
with full or partial supersymmetric solutions in AdSs x S? space-times.

8.1 Maximally symmetric space-times and supersymmetry

In this application we briefly consider the question of full or partial supersymmetry in a
maximally symmetric space-time. Hence one evaluates the supersymmetry variations of the
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fermion fields in the maximally symmetric background, where only g,,,,, 4;%, X A and YijA
can take non-zero values, taking into account that the fermion fields transform under both
Q- and S-supersymmetry. In this particular background, it turns out that the gravitino field
strength, R(Q)Wi (and the related spinor x*) is S-invariant. Since its Q-supersymmetry
variation is proportional to the field D, it immediately follows that D = 0, so that the
special conformal gauge field takes the value (we assume the gauge choice b, = 0, which
leaves a residual invariance under constant scale transformations),

a 1 a 1 a
= 2R(e,w)u — 126M R(e,w), (8.1)

where R(e,w),,® denotes the space-time curvature.

In what follows it thus suffices to concentrate on the fermions belonging to the vector
multiplets and the hypermultiplets. We first present their variations in the background,
which follow directly from (7.1) and (7.2),

0 = QQXM TMagAi’G €ij6j + A~ ‘ ,
5QZM = ZijMEj — 2g TPNMXPXNEZ‘jEj + 2ngMN,u,Z‘jN€j + 2XM772 . (82)

Substituting the equations of motion for the auxiliary fields Y;jA, the variation of the
independent fermion fields 6€;* takes the following form,

5QiA =—2g TNPA XNXP €ij Ej — 49]\7/\E (,ul'jg + FEF ,ul-jF)ej + 2XA77i R (8.3)

Following the strategy adopted by [42], we consider only combinations of fermion fields
that are invariant under S-supersymmetry. To construct S-invariant combinations of these
fermions, it is convenient to define the following two spinor fields,

G = Xiyoer QagAi* ¢
1 _
A% so—1 Mo N
Qi - = 21xvectorQMNX QZ -

Lo

2xvector XANAZQiE ) (84)

which are both formally invariant under duality when treating the embedding tensor as
a spurion. Under supersymmetry these two spinors transform equivalently in this back-
ground, provided we also use the field equation of the field D, which yields Xpyper = 2 Xvector-
Indeed one easily derives,

0 = Aij € +ni = —ei; 61 (8.5)
where the symmetric matrix A;; is given by,
Aij = =29 Xvector X i (8.6)

Here we made use of equations (5.11).

To make contact with the terms appearing in the potential (7.27), we consider the
variations of three other spinors, which are S-supersymmetry invariant and consistent with
duality. As it turns out, considering such variations gives important information regarding
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the possible supersymmetric realizations, although it will not yet fully determine whether
the corresponding solutions will actually be realized. The first two variations are,

g(uijA + Fas MijZ) 5[QjA — 2XAQ;/] = -2 XMXNTyunt 1l p Ejk e
— 2% (UM 5 + Fas " )N (e + Frz p®)é
+ Xveetor A7 Ajie”,
gNas Ty = XM XN 50N — 2 XAOY] =21 ? Qv (T X P X Q) (Trs™ XEXS) g55¢0
— 46 XM XN TN pip € (8.7)

In deriving this result we made use of identities such as (5.9) and (5.11). Furthermore we
used QMN,uZ-jM HEIN = HijA pr™ — ,ul-jA tkia = 0, which follows directly from (5.20). The
third spinor variation is based on hypermultiplets,

gXMTMaIgAiﬁ Qa’y 5[(\/ + e’:'jkAj,y C]I;I] = - QQXMXN kAM kBN 9AB €
=22 XMXN Tyn® pijp e ex

+ Xvector AijAjk €L - (88)

Here we made use of the identity,

1

Tr®5 A" Qo TNT5A;° = o Eis ks kan + Tun” pije (8.9)

which follows from (3.16), (3.27), (3.32) and (5.17). Combining (8.8) with the two previous
identities gives,
(e Ly2 6" + 3 Xvector AT Apj] € = 0. (8.10)

This relation requires eilﬁgz to be non-negative, confirming the known result that de Sitter
space-times cannot be supersymmetric.

According to [42] one must also consider the symmetry variation of the supercovariant
derivative of at least one of these spinor fields. Let us, for instance, consider Dqu\'/’
which transforms also under S-supersymmetry. The following combination is then again
S-invariant, and changes under Q-symmetry according to,

1 ~ 1 ~
1) |:DﬂQZV — 2Aij'7uQV] == fua%ei - 2A¢jA]k ’yuek . (811)
Therefore we must require that the supersymmetry parameters are subject to the eigenvalue
condition,
. 1 A A
[(Vj (R(e,w),* — GGHQR(e,w)) —e,” A’kAkj] e =0. (8.12)

Combining this result with (8.10) reproduces the Einstein equation for the maximally
symmetric space-time, irrespective of whether supersymmetry is realized fully or partially.
Observe that full supersymmetry requires that AikAkj x & jo
The result (8.10) can also be written as
1
|:AikAkj _ Lany, 5@] gt ¢ (8.13)
2 3 Xvector
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where E;Q pertains to the negative terms in L2. For full supersymmetry we thus find that
E;Q must vanish, while partial supersymmetry is associated with the smallest eigenvalue of
AikAkj and E;Q # 0. We refrain from giving more explicit details here, but we briefly con-
sider the special case of Minkowski space-time. For partial supersymmetry, the unbroken
supersymmetry parameter is subject to the condition Aijej = 0. In this context one can
consider the variation of yet another spinor, which is invariant under S-supersymmetry,
but no longer under duality,

XANps 0[Q" -2 X7 QY] = — 29X  Nyy [Tn™ XM XN 5 — 2357 €
+ 2XANAZ [XE EikEjl AR x> AU] & (814)

In the absence of magnetic charges, the first term on the right-hand side vanishes because
Tyun>XM XN can be replaced by T(MN)ZXMXN by virtue of the third equation of (5.11),
which vanishes without magnetic charges, and so does the moment map ,uijz. Therefore
both Aijej and AY Ejkek vanish, which implies that A;; vanishes so that supersymmetry
must be fully realized. This is in accord with a known theorem according to which N = 2
supersymmetry can only be broken to N = 1 supersymmetry in Minkowski space in the
presence of magnetic charges [18, 20-24]|. For the abelian gaugings the situation simpli-
fies, and one can show that Minkowski solutions with residual N = 1 supersymmetry are
possible provided that,

XM Ty AP =0,
(1ija + Fas pis™) € =0, (8.15)

with the two terms of the abelian potential vanishing separately (this follows from the first
equation of (8.7) and from (8.8)),

XMXN Ay kB N gap =0,

(™A + Fas l"=YNA (ugr + Frs =) =0. (8.16)

Without magnetic charges, one can easily verify that residual N = 1 supersymmetric
solutions are not possible.

Apart from this latter result, the above analysis only indicates which supersymmetric
solutions can, in principle, exist. To confirm that they are actually realized, one has to
also examine the supersymmetry variations of the remaining fermion fields. This can be
done, but we prefer not to demonstrate this here. Instead we will discuss this explicitly in
the application presented in the next subsection, which is less straightforward, and where
we will follow the same set-up as in this subsection.

8.2 Supersymmetry in AdS; x S2

In this second application we consider an AdSy x S? space-time background and analyze
possible supersymmetric solutions. Hence the space-time metric can be chosen equal to,

d 2
ds? = g, datda” = vy < —r2de® + :2 ) + vg <d92 + sin? 9d902) , (8.17)
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whose non-vanishing Riemann curvature components are equal to
cd —15 cod éd —1¢ éd
Rab =2 Uy 5ab 5 R&B =-2 Uy 5&5 s (8.18)

so that the four-dimensional Ricci scalar equals R = 2(v; 1_ Uy ). Observe that we used
tangent-space indices above, where a,b, ... label the flat AdSs indices (0,1) associated
with (¢,7), and @,b, ... label the flat S indices (2,3) associated with (6, ¢). Furthermore
the non-vanishing components of the auxiliary tensor field are parametrized by a complex
scalar w,

- T()lijz’-:ij - —ingZjEi]‘ =w. (819)

Using the previous results one finds the following expressions for the bosonic part of the
special conformal gauge field f,°,

1

1 _ 1 1

1, _ _ 1 1 o1
£, = (- 6 (U1 Lyouyt) — JD+ 32|w|2>6@b +  B(A)or e’ (8:20)

where the two-dimensional Levi-Civita symbols are normalized by €' = ¢2 = 1. The

cd

non-zero components of the modified curvature R(M)q,“* are given by,

1
R(M)ade = (D + 3R> 5ab6da

P 1 P
R(M)&ifd = (D + 3R> 5&BCd,

s 1 s ;
R(M) ;= ) (D - R> 8,° 6, — 2R(A)23 £a” 6;°

1 c.d
6 — 2R(A)01 5a €b . (821)

We refer to the appendices presented in [29] for the general definitions of these quantities,
which appear in the superconformal transformation rules of the Weyl multiplet fields and
are therefore needed below.

Motivated by the maximal symmetry of the two two-dimensional subspaces, we expect
the various fields to be invariant under the same symmetry. Therefore we will assume that
the scalars XM and A;® are covariantly constant (for other fields the covariant constancy
will be discussed in due course). The corresponding integrability condition then requires
that the U(1) and SU(2) R-symmetry curvatures are not necessarily vanishing, and are
related to the curvatures of the vector multiplet gauge fields. This result is consistent
with the field equations for the R-symmetry gauge fields, A, and Vui j» which lead to the
expressions (we again choose the gauge b, = 0),

R(A)HV =g X\jelctorHHVMTMQNQPNXQXP s
RO’y = = 49 5mer Huw™ 1% 01 €5 - (8.22)

Observe that the above equations only contribute for p,v = t,r, or u,v = 0, p, in view
of the space-time symmetry. We can rewrite these equations in a different form, which is
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convenient later on,

R(A);, =9 Xveetor K [Ta@" + Fas TN | Qpy XOXT

1
gt Ak]T e (8.23)

R(V);Vij = — 4gxgy1per7:(;VA [Mik/\ + Fax ,uikz] €kj + 4

where we suppressed all the fermionic terms which vanish in the background and made use
of the field equations (7.13) of the tensor fields B, , and By, m, and of (5.11).
To study supersymmetry in this background, we present the non-vanishing terms in

the supersymmetry transformations of the spinors Q;* and ¢,

1 , _ A _ A
I QWWH Mejjel — 29 Tnp™ XN X g5 — 4gN™ (g + Fr pg") el +2 X%,

6C™ =29XM o 5 AP e + A (8.24)

Note that §€; has changed as compared to (8.3) by the presence of the field strength (7.6)
(suppressing the fermionic terms, so that ﬂ;l,A = H;,,A — }lX ATH,,U €ij), while the expres-
sion for §¢“ is identical to the one given in (8.2). Just as before, we make use of the two
spinors Qy and CZH defined in (8.4). The supersymmetry variation of these fields in the

given background are,

1
5QV 4xvector X NAZHM/Y Eij Ej + AZJG + ",

5@- =€ij (A] €r + n]) , (8.25)

where A;; was defined in (8.6). Supersymmetry therefore implies that the terms propor-
tional to ¥ must vanish. As it turns out, this condition is just the field equation for T,;%,

XANasHm =0. (8.26)

Two additional fermionic variations are,

oy 1 oy
5[3((»2)@1)@ - 8Tcd”70d%b9y} =R(V),, € — QR(M)ade’VCdEZ - 8Tcd” Yoy Ay €

1 1 ,
6 [DaﬂY - R(A) oy “aci = g B(V) i7"V

1 ,
Az‘j’YaQVj} = fu e + 4

2

1 . 1 )
+ 16Aiijc]k’ch’Ya€k - 2AijAjk Ya €k » (8.27)

where we refer again to the appendices presented in [29] for more details. Observe that
we have assumed, motivated by the maximal symmetry of the two-dimensional subspaces,

that also T,,% and A;; are covariantly constant.
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The consequences of (8.27) can be expressed as follows, !5

1 . . . )
(D - 12R> €+ [R(V)y'j —iR(A)5; 0% € =0,

(D - éR) e — [2iR(A)23 5+ ;iw 6’7“/1;94 7B =0,
[AikAkjej + leiw 6ikAkj 723} ¢ =0,

<v;1 +ogt— ;]w[2>ei — [;iw/v”fakj +2R(V)%" + 2iR(A)5; 5@] yBed =0, (8.29)

Furthermore we note that the covariant constancy of Tj,% and A;; implies the conditions,

wR(A)w =0,  RV)w"iAj = —1R(A)uw Aij . (8.30)

An important observation is that both iR(V),,%; (for any p, v) and e% A; are 2 x 2 matrices
that take their value in the Lie algebra of SU(2). However, while the matrices iR(V),,"; are
necessarily hermitian, this is not the case with 6““/1@, which is in general complex-valued.

We now turn to possible supersymmetric solutions for this background. We proceed
in two steps. First we analyze the conditions for supersymmetry, ignoring the transforma-
tions (8.25). This will reveal the possible existence of three distinct classes of supersym-
metric solutions, with four or eight supersymmetries, depending on the values of R()) Wi j
and A;;. The corresponding information is summarized in table 3. As a last step we then
analyze the transformations (8.25), which lead to additional constraints. It then follows
that one of the classes listed in table 3 is actually not realized. In what follows we will
decompose the equations (8.29) in eigenstates of i7?3, denoted by ¢/, = %(1 + iy23)el. Ob-
serve that these spinors transform as a product representation of the SU(2) isometry group
associated with S? and the SU(2) R-symmetry. This observation will be relevant shortly.
Note also that the spinors transform according to e+’ — €¢;+ under charge conjugation.

We start by noting that w = 0 will only lead to a supersymmetric solution provided
v; ! = 0. Discarding this singular solution, we thus assume R(A) w = 0. Then we consider
two classes of solutions, denoted by A and B in table 3, depending on whether D — éR
vanishes or not.

For R(A),, =0 and D — éR = 0, the equations (8.29) imply,

w Aij Egt =0 5
_ L 1
IR(V)y3'j et = & 4R€§:7
1()23]_4w Ekj ei—:FQ v Uy _8|w| €t - (8.31)
5There are also charge conjugated equations. For instance, the first equation reads,

1 . .
(D+ |, R)ei + [R(V)33: +iR(A)35 0717 ¢; = 0. (8.28)
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Let us now assume that A;; # 0. In that case 6ikAkj must have a single null vector in order
that a supersymmetric solution exists. On the other hand, it must commute with the SU(2)
curvatures, which in this case implies that the R(V) Wi ; must vanish. Supersymmetry then
requires that v; = vy and

, , , 1 A
wA;jey =0, wA*ey; €, = :|:<4v11 - 4|w|2> €y . (8.32)

These equations have no solution unless A;; = 0. When A;; = 0 and the SU(2) curvatures
are non-vanishing, one can show that (8.31) implies,

iR(V)as'j €y = i;Re;, vyt = 116|w|2. (8.33)
This solution, denoted by Ay, has generically four supersymmetries, two associated with
two of the spinor parameters €'y, and two related with the charge-conjugated spinors €;=.
The two spinors of the €, must be eigenspinors of both iy?3 and iR(V)Qgij with related
eigenvalues. Therefore the supersymmetries of class Ay (and also of class B, as we shall
see later) cannot transform consistently under the SU(2) isometry group. We will return
to this aspect shortly.

In the special case where both A;; and the SU(2) curvatures vanish, we have vy ' =

Uy - 116|w|2. Generically we then have eight supersymmetries. This class is denoted by
Apy). Here the supersymmetries act consistently under the action of both SU(2) groups.
This completes the discussion of the type-A solutions.

Subsequently we turn to the solutions of class B, where D — éR # 0 and R(A),, =0.

This class is denoted by B. In that case the first two equations (8.29) imply,
o 1 4
IR(V)y3' i€ = £ (D + 12R> €,
1. . 1 A
Qw&?’kAkj e, =+ (D - 6R> €y . (8.34)
With this result, the last two equations then yield the eigenvalue equations,
: +i.J _ L —1_1 2\ i
IR(V)33"jek = F o1 T 4|w| €1
L j Lo
2wA Erj €y = = 8|w| €l . (8.35)

Combining these equations leads to,

ZT}Aij = — wsikslekl,
—i +i 1 i 20
R(V)Q?, J :R(V)Q?, J= 2R(V)23 i= _’UQ’(D e Ak,

. i g 1 4
IR(V)lejezt = + Uy Eli,

ot = wl?. (8.36)
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class R(V) Ajj V1, V2 susy

Ap R(V)=0 Aj=0  ol=vl=Lw? 4+4

Ag) | BV)as = 0o —v3t)  Ay=0 oyl = lwP#v! 2+2

B R(V)23ij =_ 4 €ikAkj = 0(051) vfl = }l|w|2 2+2

Vo W

Table 3. Three classes of supersymmetric solutions. As shown in due course, only the classes Ap,
and B are actually realized.

Just as in class Apy), these solution have generically four supersymmetries, which cannot
transform consistently under the action of the SU(2) isometry group. Furthermore, note
that the solutions become singular in the limit where V,wij and A;; vanish, so that this
class is really distinct from the type-A class.

In view of the fact that the supersymmetry spinors do not always seem to transform
consistently under the action of the SU(2) transformations associated with the S? isome-
tries, let us now first clarify this issue and turn to a discussion of the Killing spinor equations
(in gauge b, = 0) for each of the three classes. These equations take the following form,

. . o . . . 11 ) .
5(1#!/ + Yy QV’) =2Vue' +iA e +V, el — gtk 4iw 238,70 + e AY Yy €5 - (8.37)
where %ﬂ denotes the AdS, x S? covariant derivative. Obviously we may set A, and

Vo = 0.
For class-A solutions (8.37) leads to,

o L
Vaex F qwe va iz =0,
o . 1 . 1 ..
V€l + QV@Zj €L F g e €+ =0, (8.38)
where v; ! = 116 |w|?. For the solution of class Ap), we may take V,'; = 0, so that we obtain

the standard Killing spinor equations for AdS; x S2. For the Al solutions, the Killing
spinor equation on S? is somewhat unusual, because of the presence of the R-symmetry
connection whose strength is not related to the size of the S2. Since we will show later that
the type-Aj solutions are in fact not realized, we refrain from further discussion concerning
these solutions.

Hence we proceed to the class-B solutions. In this case, the Killing spinor equa-
tion (8.37) decomposes into,

o . 1 .
Vaeh F weneji =0,
o . 1 L
Sack+ vty =0, (830

Because vfl = }1|w|2, the first equation is the standard AdSs Killing spinor equation.
However, the second equation does not coincide with the standard Killing spinor equation
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on S2. We note that the strength of the R-symmetry connection is proportional to Uy L
and is therefore also determined by the S? radius. To elucidate the situation, let us briefly
discuss the relevant equations for the unit sphere (v = 1).

We use the standard coordinates § and ¢ on S?, with zweibeine e? = df and e® =
sin € dy, and gamma matrices 7o and 73 that satisfy the standard Clifford algebra relation

with positive signature. The spin connection field in our convention equals w = w?? =

—w3? = cos 0 dp. Consequently we have that %9 = Oy and %g, = (Qa — %COSH’)/QS). Now
we adopt an R-symmetry transformation to bring R(V)a3! ;j in diagonal form. In that case
we can assume V'; = —i) (03)’; cosf dp with X some real constant and o3 the diagonal
Pauli matrix. This leads to the corresponding field strength R(V)s3%; = i\ (03)%;. From
the third equation of (8.36) we conclude that |A\| = 1 and by an additional R-symmetry
transformation we can ensure that A = 1. In that case (remember that we put vy = 1) the
supersymmetries are parametrized by the parameters e}k and €2 . It is now straightforward
to verify that these spinors do not depend on the S? coordinates as a result of the second
equation (8.39).

Consequently the supersymmetries do not transform under the isometries of S?, which
implies that they carry no spin! Along the same lines one expects that also the fields in this
background will change their spin assignment. The reason that the spin assignments change
in this background, is that the spin rotations associated with the isometries of S? become
entangled with R-symmetry transformations, in a similar way as in magnetic monopole so-
lutions, where the rotational symmetry becomes entangled with gauge transformations [26].
In the superconformal context, where one has R-symmetry connections (which in this so-
lution live on S2), the geometric origin of the entanglement is clear. While such conditions
on the supersymmetry spinor have been obtained previously in the literature for a vari-
ety of four- and five-dimensional supersymmetric solutions (see, e.g. [27, 28, 43-45], this
phenomenon seems not to have received special attention.

Finally we must investigate the remaining variations based on (8.24). Consider first
the variation for the fields ©;*, which we parametrize as 6Q; = AijAej —2X%n;, so that

AijA =2 7:[53A6ij723 — 29 TNPA XNXP Eij — 49]\7/\Z (,uijg + ng ,uijF) . (8.40)

Then we consider the variation of two S-invariant combinations, Q% — 2X AQZ\-/, and
D, (A —2XAQV) — ; (AN 2 XA AY )%LQ}/, whose vanishing under supersymmetry imply
the following identities,

[AijA — QXAAU‘] Gj - O,
4 A 1 j
(AZ’“‘ —2 X A%) (A = S Thets wbc> Yoe! =0, (8.41)

where we assumed that DHAA = 0 in line with our earlier ansatze. Likewise we obtain two
equations for the hypermultiplets,

[2 gXMTMo?B AZB Eij — AiaAl'j] ej = 0,
1

(29X M Ty %5 AP ™ — 4;%A) <Akj ~q

Thut, wbc) =0 (8.42)
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We note the presence of a universal factor on the right-hand side of the equation in (8.41)
and (8.42), which is proportional to

1 1 ey
< RE v 55), (8.43)

which is the hermitian conjugate of the term that appears at the right-hand side of (8.37).
The equations (8.41) and (8.42) lead to the following six conditions,

b I
Agj = Toenj v = —ep (€™ Amj —

[g TNPA XNXP (5ij —2 g]VAE €ik (,uka—{—FE[‘ ,ukjr) —XA €ikAkj] EZL = F iﬂ53A Eii s
_ . . . _ . . 1. - .
[g TNPA XNXP €Zk + 2gNAE (Iulkz + FEF qukl“) + XA Alk] Ak_] Egl: _ 41,w H;_?’A Eli’

w [g TNPA xNxFt (5ij —ngAE&“ik (MkjE+FZF Mkjr) —XA AikEkj] Eji =4 7:(;3/\ &“ikAkj Eji ,

[2 gXMTM@B AZB €ij — Aia{Aij] Egt 0 N
[2 gXMTMaﬁ A,B Eik — AiaAik] Akj Ei - 0,

[2 gXMTMaﬁ Azﬂ 6ik — AiaAik] Ekj Eji

0. (8.44)

Let us now consider the various classes of solutions shown in table 3. First of all the
solutions of type A, characterized by A;; = 0. From the second equation of (8.44) it then
follows that 7:(WA = 0. Combining this result with the equations (8.23) shows that both
R(A)u, and R(V),,"; must vanish. This implies that solution Ay is not realized. Hence we
are left with the fully supersymmetric solution Apj;. Therefore we proceed by determining
the additional restrictions for this solution.

The first, third, fourth and sixth equations of (8.44) can be written as follows,

iaikuij eji = — ;TNPA(X'NXP — XNXP) eii ,
INASH (2 1y i+ (Fer + For)urg") €, = ;iTNpA(XNXP + XNXPyeL
XMTMa‘B AiBelj ei =0,
XMTy 5 AP € =0. (8.45)

Since a hermitian matrix must have real eigenvalues, it follows that both sides of the first
two equations should vanish. Also the factors in the last two equations should vanish,
so that

HijA = ,uijA =0,
Tnp*XVNXT =0,
XMTyo5 AP =0 = XMTy 5 AP (8.46)

Note that L2 is now vanishing. For electric charges these solutions have already been iden-
tified in [25]. Without charges this is the well-known solution that arises as a near-horizon
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geometry of BPS black holes. The fact that the moment maps and certain combinations
of Killing vectors are vanishing does not warrant the conclusion that there is no gauging.
One can only conclude that the field equations require some of these quantities to vanish
for these solutions.

Now consider the type-B solution where A;; is non-vanishing. In that case the first
three equations of (8.44) lead to two independent equations,

_ . . _ . A 1 _ ;
[g TNPA XNXP (Vj - QQNAZ e’;‘lk (MkjE + Fyr ,ukjr)] Eji =+ <1H23A + 4?1}XA> 63:,
_ . B . oA 1 - .
[gTNpA xNx*? &' — QgNAzsm(,ukjg + Fyr ,ukjr)] €, =7F <1H§L?)A — 4wXA> €l .
(8.47)

These equations can be analyzed in a similar way as the corresponding equations in (8.45).
The results are as follows,

TnprXVXP =0,
ik A o e - Laxen) (e Bwxn )| é
ge Hrj € = F 23 = 4 23 T 10 €t
. . 1 N 1 _ . 1 _ )
gz’:‘lkukj/\ GZt = + 9 |:FAZ <H2_3Z — 4inZ> — FAs <H;_32 + 4inE>] Eli . (8.48)

From (5.9), it follows that the first constraint of (8.48) can be generalized to
TunTXMXN = 0. Using also the representation constraint (5.6), one reconfirms that
R(A),., as given in (8.23), vanishes. The same argument applies to solutions of type Apy-
Furthermore, as a check one may also reconstruct the eigenvalue equation for A;; which
shows once more that (8.26) must be valid.

One can use the same strategy and determine R(V)23'; from (8.23), making use
of (8.48) with Ty n" XM XN = 0. Evaluating this curvature on the supersymmetry pa-
rameters, making use of the eigenvalue condition for this curvature presented in (8.36) as
well as of (8.26), it follows that

1
lw|? . (8.49)

-1 _ —1 =N+
Uy = _2xvectorNAZH23 H23 - ]

In the first expression on the right-hand side, one can verify, replacing Npx, by the negative
definite metric M5 defined in (7.26) and using (8.26), that this expression must be positive,
which yields an upper bound on |w|? for given field strengths Hog™.

The last three equations of (8.44) lead to two equations,

xM [TMaﬁAiB + X;elctorgij MjkM Aka] =0,
XM [TMaﬁAzﬂ + X;e{:torgij M]kM Aka] =0 (850)

From these equations, one derives, upon using (8.9),

_ 1
g XM XN kA kan =

16Xvector |w|2 . (851)
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The scalar potential in the type-B solutions thus takes the form,

e 'Lz = — 29" Xvector Mz N [0 + Fro p7Y) N2 [z + Fea pij®)

3
- 16XVector ‘w‘Q s (852)

where the first term is negative and the second one positive. We refrain from giving
further results.

For a single (compensating) hypermultiplet, which can only have abelian gaugings, we
expect that one of these type-B solutions describes the near-horizon geometry of the spher-
ically symmetric static black hole solution presented in [27, 28]. The result of this paper
then ensures that this black hole solution has supersymmetry enhancement at the horizon.
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