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1 Introduction

In four space-time dimensions, Lagrangians with abelian gauge fields have generically less

symmetry than their corresponding equations of motion. The full invariance group of

the combined field equations and Bianchi identities in principle involves a subgroup of

the electric/magnetic duality group, Sp(2n,R) for n vector fields, suitably combined with

transformations of the matter fields. Subgroups of the symmetry group of the Lagrangian

can be gauged in the conventional way by introducing covariant derivatives and covariant

field strengths. Introducing gauge groups which involve elements of the electric/magnetic

duality group that do not belong to the symmetry group of the Lagrangian, are not possible

in this way.

To circumvent this problem, one may therefore first convert the Lagrangian by an elec-

tric/magnetic equivalence transformation to a different, but equivalent, Lagrangian that

has the desired gauge group as a symmetry. However, this procedure is cumbersome. One

reason for this is that the gauge fields in the old and in the new electric/magnetic duality

frame are not generically related by local field redefinitions. The effect of changing the

duality frame is therefore not straightforward, and it is by no means trivial to explicitly

obtain the new Lagrangian (see e.g. [1]). A related aspect is that, when the gauge fields

belong to supermultiplets, their relation with other fields of the multiplet will be affected

– 1 –



J
H
E
P
1
0
(
2
0
1
1
)
0
5
0

by changes of the duality frame, unless one simultaneously performs corresponding redefini-

tions of these fields as well.1 The modern embedding tensor approach circumvents all these

problems by introducing, from the start, both electric and magnetic gauge fields as well as

tensor gauge fields. In this approach the gauge group is not restricted to a subgroup of the

invariance group of the Lagrangian, but it must only be a subgroup of the symmetry group

of field equations and Bianchi identities. The formalism is straightforwardly applicable

to any given Lagrangian, and the gauge group is only restricted by two group-theoretical

constraints on the embedding tensor [3].

In this paper we study general gaugings of N = 2 supergravity theories based on vector

supermultiplets and hypermultiplets. Because these theories can generally be studied by

means of the superconformal multiplet calculus [4–6], it suffices to understand the embed-

ding tensor framework in the context of conformal supergravity. This study is facilitated

by the fact that the embedding tensor framework has already been considered for rigid

N = 2 supersymmetric gauge theories [7], without paying particular attention to the class

of superconformally invariant models. The purpose of the present paper is to fill this gap

by presenting a comprehensive treatment of the embedding tensor method in the context

of locally supersymmetric N = 2 theories.

Theories with N = 2 supersymmetry are special with respect to electric/magnetic

duality. For N = 1 supersymmetry the transformations of the matter fields under elec-

tric/magnetic duality, and thus under the gauge group, are not a priori defined, and will

depend on the details of the model. On the other hand, in theories with N > 2 supersym-

metries all of the matter fields are closely linked to the vector fields, because they belong

to common supermultiplets. Theories with N = 2 supersymmetries are exceptional in that

they exhibit both of these characteristic features. The complex scalars belonging to the

vector multiplets transform in a well-defined way under electric/magnetic duality so that

the Lagrangian will retain its standard form expressed in terms of a holomorphic function,

while the scalars of the hypermultiplets have no a priori defined transformations under elec-

tric/magnetic duality. Prior to switching on the gauging, the hypermultiplets are invariant

under some rigid symmetry group that is independent of the electric/magnetic duality

group. Once the gauge group has been embedded in the latter group, then one has to sepa-

rately specify its embedding into the symmetry group associated with the hypermultiplets.

The embedding tensor approach of [3] makes use of both electric and magnetic charges

and their corresponding gauge fields. The charges are encoded in terms of an embedding

tensor, which specifies the embedding of the gauge group into the full rigid invariance

group. This embedding tensor is treated as a spurionic object (a quantity that is treated

as a dynamical field, but that is frozen to a constant at the end of the calculation), so

that the electric/magnetic duality structure of the ungauged theory is preserved when the

charges are turned on. Besides introducing a set of dual magnetic gauge fields, also tensor

gauge fields are required transforming in the adjoint representation of the rigid invariance

group. These extra fields carry additional off-shell degrees of freedom, but the number of

1One way to circumvent this is by describing the scalar fields in terms of sections whose parametrization

is linked to a specific frame (see, for instance, [2]).
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physical degrees of freedom remains the same owing to extra gauge transformations. Prior

to [3] it had already been discovered that magnetic charges tend to be accompanied by

tensor fields. An early example of this was presented in [8], and subsequently more theories

with magnetic charges and tensor fields were constructed, for instance, in [9–11], mostly

in the context of abelian gauge groups. The embedding tensor approach has already been

explored for many supersymmetric theories in four space-time dimensions. For instance, it

was successfully applied to N = 4 supergravity [12] and to N = 8 supergravity [13]. More

recently it has also been discussed for N = 1 supergravity [14]. In [7] some applications

to N = 2 supergravity were already presented, under the assumption that the conformal

multiplet calculus [4–6] is applicable. As it turned out, the results of the embedding tensor

approach confirm and/or clarify various previous results in the literature, especially for

abelian gaugings [15, 16]. The embedding tensor is ideally suited for the study of flux

compactifications in string theory (for a review, see [17]). Recently it was successfully

employed in a study of partial breaking of N = 2 to N = 1 supersymmetry [18, 19].

The supersymmetric Lagrangians derived in this paper incorporate gaugings in both

the vector and hypermultiplet sectors. The vector multiplets are initially defined as off-

shell multiplets, but the presence of the magnetic charges causes a breakdown of off-shell

supersymmetry. Of course, conventional hypermultiplets based on a finite number of fields

will not constitute an off-shell representation of the supersymmetry algebra irrespective of

the presence of charges. We refer to a more in-depth discussion of the off-shell aspects of the

embedding tensor method in [7], where a construction was presented in which the tensor

fields associated with the magnetic charges were contained in a tensor supermultiplet.

Besides giving a comprehensive treatment of the embedding tensor formalism in the

context of local N = 2 supersymmetric theories, we also present two applications to il-

lustrate how the embedding tensor formalism can be used to obtain rather general results

about realizations of N = 2 gauged supergravities. One concerns the supersymmetric real-

izations in maximally symmetric spaces. In flat Minkowski space, it was established that

residual supersymmetry is only possible in the presence of magnetic charges [20–24]. Here,

we therefore briefly review the situation in the context of the embedding tensor approach,

where it is natural to have both electric and magnetic charges.

A second application deals with supersymmetric solutions in AdS2 × S2 space-times.

Here we establish that there exist only two classes of supersymmetric solutions. One con-

cerns fully supersymmetric solutions. It contains the solutions described in [25] as well as

the near-horizon solution of ungauged supergravity that appears for BPS black holes. The

other class exhibits four supersymmetries and these solutions may appear as near-horizon

geometries of BPS black holes in N = 2 gauged supergravity. Interestingly enough, solu-

tions in AdS2 × S2 with only two supersymmetries are excluded. The spinor parameters

associated with the four supersymmetries are AdS2 Killing spinors that are constant on S2,

so that they carry no spin. Nevertheless the bosonic background is rotationally invariant.

The spin assignments change in this background, because the spin rotations associated with

the S2 isometries become entangled with R-symmetry transformations, a phenomenon that

is somewhat similar to what happens for magnetic monopole solutions where the rotational

symmetry becomes entangled with gauge transformations [26]. In the superconformal per-
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spective, these solutions have R-symmetry connections living on S2, and this explains the

geometric origin of the entanglement. It is to be expected that the near-horizon geometry

of a recently presented static, spherically symmetric, black hole solution [27, 28] will coin-

cide with one of the solutions described in this paper. The results of this paper then imply

that this black hole solution must exhibit supersymmetry enhancement at the horizon.

This paper is organized as follows. In section 2 we recall the relevant features of N = 2

vector multiplets and electric/magnetic duality in the context of conformal supergravity,

and we introduce the electric and magnetic gauge fields. Hypermultiplets, hyperkähler

cones and their isometries are introduced in a superconformal setting in section 3. In

section 4 we present the relevant Lagrangians for matter fields coupled to conformal super-

gravity. Section 5 contains a discussion of the possible gauge transformations, the electric

and magnetic charges, and the embedding tensor. In section 6 we describe the introduction

of tensor fields, needed in the presence of general charge assignments. Section 7 deals with

the algebra of superconformal transformations in the presence of a gauging. It presents the

extra masslike terms and the scalar potential in the vector multiplet and hypermultiplet

Lagrangians that are induced by these gaugings. Finally, in section 8 we summarize our

results and review two applications. Readers who are not primarily interested in the more

technical details of the embedding tensor formalism, can proceed directly to this section.

We have refrained from collecting additional information in an appendix and refer instead

to the appendices presented in [29].

2 Superconformal vector multiplets and electric/magnetic duality

Vector supermultiplets in four space-time dimensions with N = 2 supersymmetry can

be defined in a superconformal background. Consider n + 1 of these multiplets, labeled

by indices Λ = 0, 1, . . . , n. Vector supermultiplets comprise complex scalar fields XΛ,

gauge fields Wµ
Λ, and Majorana spinors which are conveniently decomposed into chiral

and anti-chiral components: spinors Ωi
Λ have positive, and spinors ΩiΛ have negative

chirality (so that γ5Ωi
Λ = Ωi

Λ and γ5ΩiΛ = −ΩiΛ). The spinors carry indices i = 1, 2, and

transform as doublets under the R-symmetry group SU(2). This group is realized locally

with gauge fields belonging to the superconformal background, as we shall discuss below.

Furthermore there are auxiliary fields Yij
Λ, which satisfy the pseudo-reality constraint

(Yij
Λ)∗ = εikεjlYkl

Λ, so that they transform as real vectors under SU(2). The tensors

F±
µν

Λ are the (anti-)selfdual (complex) components of the field strengths, which will be

expressed in terms of vector fields Wµ
Λ. The supersymmetry transformations of these

fields will depend on the superconformal background.

Before presenting the supersymmetry transformations of the vector multiplets, we first

specify the superconformal background fields, which comprise the so-called Weyl super-

multiplet, and their relation to the superconformal transformations. The latter contains

the generators of general-coordinate, local Lorentz, dilatation, special conformal, chiral

SU(2) and U(1), supersymmetry (Q) and special supersymmetry (S) transformations. The

gauge fields associated with general-coordinate transformations (eµ
a), dilatations (bµ), chi-

ral symmetry (Vµ
i
j and Aµ) and Q-supersymmetry (ψµ

i) are independent fields. The
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field XM Ωi
M Wµ

M Yij
Λ

w 1 3
2 0 2

c −1 −1
2 0 0

Table 1. Weyl and chiral weights of the vector multiplet fields.

remaining gauge fields associated with the Lorentz (ωµ
ab), special conformal (fµ

a) and

S-supersymmetry transformations (φµ
i) are dependent fields. They are composite objects,

which depend on the independent fields of the multiplet [4–6]. The corresponding super-

covariant curvatures and covariant fields are contained in a tensor chiral multiplet, which

comprises 24 + 24 off-shell degrees of freedom. In addition to the independent supercon-

formal gauge fields, it contains three other fields: a Majorana spinor doublet χi, a scalar

D, and a selfdual Lorentz tensor Tabij , which is anti-symmetric in [ab] and [ij]. We refer

to the appendices in [29] for an extended summary of the superconformal transformations

of the Weyl multiplet fields, the expressions for the curvatures and other useful details.

The transformations of the vector multiplet fields under dilatations and chiral transfor-

mations are given in table 1. Under local Q- and S-supersymmetry they are as follows [4],

δXΛ = ǭiΩ Λ
i ,

δWµ
Λ = εij ǭi(γµΩj

Λ + 2ψµjX
Λ) + εij ǭ

i(γµΩj Λ + 2ψµ
jX̄Λ) ,

δΩi
Λ = 2 /DXΛǫi +

1

2
γµν F̂−

µν
Λεijǫ

j + Yij
Λǫj + 2XΛηi ,

δYij
Λ = 2 ǭ(i /DΩj)

Λ + 2 εikεjl ǭ
(k /DΩl)Λ . (2.1)

Here ǫi and ǫi denote the spinorial parameters of Q-supersymmetry and ηi and ηi those of S-

supersymmetry. The field strengths Fµν
Λ = 2 ∂[µWν]

Λ are contained in the supercovariant

combination,

F̂µν
Λ =F+

µν
Λ + F−

µν
Λ − εijψ̄[µ i(γν]Ωj

Λ + ψν]jX
Λ) − εijψ̄[µ

i(γν]Ω
j Λ + ψν]

jX̄Λ)

−
1

4
(XΛ Tµνij ε

ij + X̄Λ Tµν
ij εij) . (2.2)

The full superconformally covariant derivatives are denoted by Dµ, while Dµ will denote

a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2) transfor-

mations. As an example of the latter, we note the definitions,

DµX
Λ =

(

∂µ − bµ + iAµ

)

XΛ ,

DµΩi
Λ =

(

∂µ −
1

4
ωµ

abγab −
3

2
bµ +

1

2
iAµ

)

Ωi
Λ −

1

2
Vµ

j
i Ωj

Λ . (2.3)

We now assume an holomorphic function F (X) of the fields XΛ, which is homogeneous

of second degree, i.e. F (λX) = λ2F (X), for any complex parameter λ. As is well known [5,
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30], such a function can be used to write down a consistent action for the vector multiplets

in the superconformal background provided by the Weyl multiplet fields. Rather than

to determine this action, we first consider an extension of the field representation that

will facilitate the treatment of electric/magnetic duality in the presence of non-zero gauge

charges. Since this duality ultimately involves the equations of motion, it will be essential

that the action exists, but for the purpose of this section it is not necessary to display its

precise form.

In the absence of charged fields, abelian gauge fields Wµ
Λ appear exclusively through

the field strengths, Fµν
Λ = 2 ∂[µWν]

Λ. The field equations for these fields and the Bianchi

identities for the field strengths comprise 2(n+ 1) equations,

∂[µFνρ]
Λ = 0 = ∂[µGνρ] Λ , (2.4)

where

Gµν Λ = ie εµνρσ
∂L

∂Fρσ
Λ
. (2.5)

At this point we cannot give the form of GµνΛ, because we have not yet specified the action.

Instead, we will extract its definition below by using supersymmetry.

It is convenient to combine the tensors Fµν
Λ and GµνΛ into a (2n + 2)-dimensional

vector,

Gµν
M =

(

Fµν
Λ

GµνΛ

)

, (2.6)

so that (2.4) reads ∂[µGνρ]
M = 0. Obviously these 2(n + 1) equations are invariant under

real 2(n+ 1)-dimensional rotations of the tensors Gµν
M ,

(

FΛ

GΛ

)

−→

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)(

FΣ

GΣ

)

. (2.7)

Half of the rotated tensors can be adopted as new field strengths defined in terms of new

gauge fields, and the Bianchi identities on the remaining tensors can then be interpreted

as field equations belonging to some new Lagrangian expressed in terms of the new field

strengths. In order that such a Lagrangian exists, the real matrix in (2.7) must belong to

the group Sp(2n+2; R). This group consists of real matrices that leave the skew-symmetric

tensor ΩMN invariant,

Ω =

(

0 1

−1 0

)

. (2.8)

The conjugate matrix ΩMN is defined by ΩMNΩNP = −δM
P . Here we employ an Sp(2n+

2; R) covariant notation for the 2(n+1)-dimensional symplectic indices M,N, . . ., such that

ZM = (ZΛ, ZΣ). Likewise we use vectors with lower indices according to YM = (YΛ, Y
Σ),

transforming according to the conjugate representation so that ZM YM is invariant.

The Sp(2n+2; R) transformations are known as electric/magnetic dualities, which also

act on electric and magnetic charges (for a review of electric/magnetic duality, see [1]). The

Lagrangian depends on the electric/magnetic duality frame and is therefore not unique.
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Different Lagrangians related by electric/magnetic duality lead to equivalent field equations

and thus belong to the same equivalence class. These alternative Lagrangians remain

supersymmetric but because the field strengths (and thus the underlying gauge fields)

have been redefined, the standard relation between the various fields belonging to the

vector supermultiplet, encoded in (2.1), is lost. However, upon a suitable redefinition of

the other vector multiplet fields (possibly up to terms that will vanish subject to equations

of motion) this relation can be preserved. It is to be expected that the new Lagrangian

is again encoded in terms of a holomorphic homogeneous function, expressed in terms

of the redefined scalar fields. Just as the Lagrangian changes, this function will change

as well. Hence, different functions F (X) can belong to the same equivalence class. The

new function is such that the vector XM = (XΛ, FΛ) transforms under electric/magnetic

duality according to

(

XΛ

FΛ

)

−→

(

X̃Λ

F̃Λ

)

=

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)(

XΣ

FΣ

)

. (2.9)

The new function F̃ (X̃) of the new scalars X̃Λ follows from integration of (2.9) and takes

the form

F̃ (X̃) =F (X) −
1

2
XΛFΛ(X) +

1

2
(UTW )ΛΣX

ΛXΣ

+
1

2
(UTV +WTZ)Λ

ΣXΛFΣ(X) +
1

2
(ZTV )ΛΣFΛ(X)FΣ(X) . (2.10)

There are no integration constants in this case because the function must remain homoge-

neous of second degree.

In general it is not easy to determine F̃ (X̃) from (2.10) as it involves the inversion of

X̃Λ = UΛ
ΣX

Σ + ZΛΣFΣ(X). As we emphasized in section 1, this is the reason why one

prefers to avoid changing the electric/magnetic duality frame. The duality transformations

on higher derivatives of F (X) follow by differentiation and we note the results,

F̃ΛΣ(X̃) = (VΛ
ΓFΓΞ +WΛΞ) [S−1]ΞΣ ,

F̃ΛΣΓ(X̃) =FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ , (2.11)

where

SΛ
Σ =

∂X̃Λ

∂XΣ
= UΛ

Σ + ZΛΓFΓΣ . (2.12)

It is also convenient to introduce the symmetric real matrix,

NΛΣ = −iFΛΣ + iF̄ΛΣ , (2.13)

whose inverse will be denoted by NΛΣ, and which transforms under electric/magnetic

duality according to

ÑΛΣ(X̃, ˜̄X) = NΓ∆ [S−1]ΓΛ [S̄−1]∆Σ . (2.14)

To determine the action of the dualities on the fermion fields, we consider supersym-

metry transformations of the symplectic vector XM = (XΛ, FΛ), which can be written as

– 7 –
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δXM = ǭiΩi
M , thus defining an Sp(2n + 2; R) covariant fermionic vector, Ωi

M ,

Ωi
M =

(

Ωi
Λ

FΛΣ Ωi
Σ

)

. (2.15)

Complex conjugation leads to a second vector, ΩiM , of opposite chirality. From (2.15) one

derives that, under electric/magnetic duality,

Ω̃i
Λ = SΛ

Σ Ωi
Σ . (2.16)

Note the identity

ΩMN XMΩi
N = 0 , (2.17)

which also implies that supersymmetry variations of Ωi
M are subject to ΩMN XM δΩi

N = 0

up to terms quadratic in the vector multiplet spinors. This observation explains some of

the identities that we will encounter in due course.

The supersymmetry transformation of Ωi
M follows from (2.1), and we decompose it

into the following form,

δΩi
M = 2 /DXM ǫi +

1

2
γµνĜ−

µν
Mεij ǫ

j + Zij
M ǫj + 2XMηi . (2.18)

From this the existence follows of a symplectic vector of anti-selfdual supercovariant field

strengths,

Ĝ−
µν

M =

(

Ĝ−
µν

Λ

Ĝ−
µνΛ

)

. (2.19)

where Ĝ−
µν

Λ = F̂−
µν

Λ, with F̂−
µν

Λ defined in (2.2), and Ĝ−
µνΛ is defined by,

Ĝ−
µνΛ = FΛΣF̂

−
µν

Σ −
1

8
FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (2.20)

We can also define a second symplectic array of anti-selfdual field strengths,

G−
µν

M =

(

G−
µν

Λ

G−
µνΛ

)

, (2.21)

with Gµν
Λ = Fµν

Λ. The second component, GµνΛ, then follows from the identification

(compare to the decomposition (2.2)),

Ĝµν
M =G+

µν
M +G−

µν
M − εijψ̄[µ i(γν]Ωj

M + ψν]jX
M ) − εijψ̄[µ

i(γν]Ω
j M + ψν]

jX̄M )

−
1

4
(XM Tµνij ε

ij + X̄M Tµν
ij εij) . (2.22)

This implies the following decomposition for G−
µνΛ (and likewise for G+

µνΛ),

G−
µνΛ = FΛΣF

−
µν

Σ − 2iO−
µνΛ , (2.23)
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with

O−
µνΛ = −

1

16
iFΛΣΓ Ω̄i

ΣγµνΩj
Γ εij −

1

8
NΛΣεijψ̄ρ

iγµνγ
ρΩjΣ

−
1

8
NΛΣX̄

Σ εijψ̄ρ
iγρσγµνψσ

j +
1

8
NΛΣX̄

Σ Tµν
ijεij . (2.24)

Note that the homogeneity of F (X) is crucial for deriving these results. The defini-

tion (2.22) shows that also (Fµν
Λ, GµνΣ) transforms as a symplectic vector under elec-

tric/magnetic duality.

Consistency requires that the field strengths Gµν
M satisfy a Bianchi identity. While

Gµν
Λ clearly does, it is not obvious for the field strengths GµνΛ. The latter Bianchi identity

can, however, be provided by the field equation for the vector fields following from some

supersymmetric action. In that case GµνΛ will coincide with (2.5). We shall verify in

section 4 that this is indeed the case for the action encoded in the holomorphic function

F (X). It should be obvious that also the field strengths Ĝµν
M satisfy a Bianchi-type

identity, but of a more complicated form. Identities of this type have been presented

in [4] for Ĝµν
Λ.

To summarize, both the fields strengths Ĝµν
M and Gµν

M transform as a symplectic

vector under duality, and they differ in their fermionic terms and in terms proportional to

the selfdual and anti-selfdual tensor fields Tabij and Tab
ij, respectively. The supercovariant

field strengths Ĝµν
M appear in the supersymmetry transformation rules of the fermions,

while the field strengths Gµν
M , when constrained by the standard Bianchi identities, im-

ply that Fµν
Λ can be expressed in terms of a vector potential Wµ

Λ, and is subject to

corresponding field equations.

Regarding the quantities Zij
M , that also follow from (2.18), we have a similar situation.

They are defined by

Zij
M =

(

Yij
Λ

FΛΣ Yij
Σ − 1

2FΛΣΓ Ω̄i
ΣΩj

Γ

)

, (2.25)

which suggests that Zij
M transforms under electric/magnetic duality as a symplectic vec-

tor. However, this is only possible provided we impose a pseudo-reality condition on ZijΛ.

This constraint can also be understood as the result of field equations associated with a

supersymmetric action, whose Lagrangian will be presented in the next section 4.

From the fact that the field strengths GµνΛ are subject to a Bianchi identity, it follows

that they can be expressed in terms of magnetic duals WµΛ. Hence we introduce these mag-

netic gauge fields, whose role will eventually become clear in the context of the embedding

tensor formalism which will be introduced in due course. Together with the electric gauge

fields Wµ
Λ, the magnetic duals constitute a symplectic vector, Wµ

M = (Wµ
Λ,WµΛ), where

Gµν
M = 2 ∂[µWν]

M . As we shall see, this relationship is, however, not exact and the iden-

tification is subject to certain equations of motion. The supersymmetry transformations

of Wµ
M are conjectured to take a duality covariant form,

δWµ
M = εij ǭi(γµΩj

M + 2ψµjX
M ) + εij ǭ

i(γµΩj M + 2ψµ
jX̄M ) . (2.26)
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Observe that, with this transformation rule, the field strengths Ĝµν
M are supercovariant.

As mentioned above, GµνΛ and 2∂[µWν]Λ are not identical! This can be seen by calculating

the supersymmetry variation of 2∂[µWν]Λ and showing that it only coincides with the su-

persymmetry variation of (2.23) up to equations of motion. In the presence of gauge charges

in the context of embedding tensor formalism, the Lagrangian can depend simultaneously

on electric and magnetic gauge fields, as is described in later sections.

The consistency, up to equations of motion, of introducing dual gauge fields WµΛ is

also confirmed when considering the closure of the supersymmetry algebra, based on (2.26).

Although we started with an off-shell definition of the vector multiplets, so that all super-

conformal transformations will close under commutation without imposing the equations

of motion, this is not necessarily the case for the newly introduced gauge field WµΛ. Before

discussing this in detail we present the decomposition of the commutator of two infinitesi-

mal Q-supersymmetry transformations, with parameters ǫ1 and ǫ2,

[δ(ǫ1), δ(ǫ2)] = ξµDµ + δM (ε) + δK(ΛK) + δS(η) + δgauge(Λ
M ) , (2.27)

where the parameters of the various infinitesimal transformations on the right-hand side

are given by

ξµ = 2 ǭ2
iγµǫ1i + h.c. ,

εab = ǭ1
iǫ2

j T ab
ij + h.c. ,

Λa
K = ǭ1

iǫ2
j DbT

ba
ij −

3

2
ǭ2

iγaǫ1iD + h.c. ,

ηi = 6 ǭ[1
iǫ2]

j χj ,

ΛM = 4 X̄M ǭ2
iǫ1

j εij + h.c. , (2.28)

where the first term proportional to ξµ denotes a supercovariant translation, i.e. a gen-

eral coordinate transformation with parameter ξµ, suitably combined with field-dependent

gauge transformations so that the result is supercovariant. The terms proportional to

ΛM denote the abelian gauge transformation acting on both the electric and the magnetic

gauge fields Wµ
M . This result was already known for all the fields [4], except for WµΛ.

The validity of (2.27) on WµΛ can be derived in direct analogy with the calculation of the

commutation relation on Wµ
Λ, upon replacing GµνΛ by 2 ∂[µWν]Λ.

The electric/magnetic duality transformations define equivalence classes of La-

grangians. A subgroup thereof may constitute an invariance of the theory, meaning that

the Lagrangian and its underlying function F (X) do not change [5, 31]. More specifically,

an invariance implies

F̃ (X̃) = F (X̃) , (2.29)

so that the result of the duality leads to a Lagrangian based on F̃ (X̃) which is identical

to the original Lagrangian. Because F̃ (X̃) 6= F (X), as is obvious from (2.10), F (X) is not

an invariant function. Instead the above equation implies that the substitution XΛ → X̃Λ
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into the function F (X) and its derivatives, induces precisely the duality transformations.

For example, we obtain,

FΛ(X̃) =VΛ
ΣFΣ(X) +WΛΣX

Σ ,

FΛΣ(X̃) = (VΛ
ΓFΓΞ +WΛΞ) [S−1]ΞΣ ,

FΛΣΓ(X̃) =FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ . (2.30)

Another useful transformation rule is,

Õ−
µνΛ = O−

µνΣ [S−1]ΣΛ . (2.31)

In section 5 we are precisely interested in this subclass of electric/magnetic duality trans-

formations, as these are the ones that can be gauged.

3 Superconformal hypermultiplets

In this section we give a brief description of hypermultiplets and their isometries, following

the framework of [32]. The nH + 1 hypermultiplets are described by 4(nH + 1) real scalars

φA, 2(nH + 1) positive-chirality spinors ζ ᾱ and 2(nH + 1) negative-chirality spinors ζα.

Hence target-space indices A,B, . . . take values 1, 2, . . . , 4(nH +1), and the indices α, β, . . .

and ᾱ, β̄, . . . run from 1 to 2(nH + 1). The chiral and anti-chiral spinors are related by

complex conjugation (as we are dealing with 2(nH + 1) Majorana spinors) under which

indices are converted according to α↔ ᾱ.

For superconformally invariant Lagrangians, the scalar fields of the hypermultiplets

parametrize a 4(nH + 1)-dimensional hyperkähler cone [32–35]. Such a cone has a homo-

thetic conformal Killing vector χA,

DAχ
B = δA

B , (3.1)

which, locally, can be expressed in terms of a hyperkähler potential χ (in later sections

denoted by χhyper),

χA = ∂Aχ . (3.2)

The cone metric can thus be written as gAB = DA∂Bχ. This relation does not define

the metric directly, because of the presence of the covariant derivative which contains the

Christoffel connection. We also note the relation

χ =
1

2
gAB χ

AχB . (3.3)

Hyperkähler spaces have three hermitian, covariantly constant complex structures Jij =

Jji, satisfying the algebra of quaternions,

JijAB ≡ (J ij
AB)∗ = εikεjlJ

kl
AB , J ij

A
C Jkl

CB =
1

2
εi(kεl)j gAB + ε(i(k J l)j)

AB . (3.4)

As it turns out, the hyperkähler potential serves as a Kähler potential for each of the

complex structures.
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Hyperkähler cones have SU(2) isometries; the corresponding Killing vectors are ex-

pressed in terms of the complex structures and the homothetic Killing vector,

kij
A = Jij

AB χB , (3.5)

from which it follows that

DAk
ij

B = −J ij
AB . (3.6)

From the above results, it follows that the homothetic Killing vector χA and the three

SU(2) Killing vectors kijA are mutually orthogonal,

χAχA = 2χ , kij
A kkl

A = δ(i
k δj)

l χ , χA kij
A = 0 . (3.7)

The hypermultiplet fields transform under dilations, associated with the homothetic

Killing vector, and the SU(2) × U(1) transformations of the superconformal group, with

parameters ΛD, ΛSU(2) and ΛU(1), respectively,

δφA = ΛD χ
A + ΛSU(2)

i
k ε

jk kij
A ,

δζα + δφA ΓA
α
β ζ

β =

(

3

2
ΛD −

1

2
iΛU(1)

)

ζα . (3.8)

Here ΓA
α

β denote the connections associated with field-dependent reparametrizations of

the fermions of the form ζα → Sα
β(φ) ζβ . Naturally the conjugate connections Γ̄A

ᾱ
β̄ are as-

sociated with the reparametrizations ζ ᾱ → S̄ᾱ
β̄(φ) ζ β̄ . These tangent-space reparametriza-

tions act on all quantities carrying indices α and ᾱ. The corresponding curvatures RAB
α

β

and R̄AB
ᾱ

β̄ take their values in sp(nH+1) ∼= usp(2nH +2; C). These curvatures are linearly

related to the Riemann curvature RABC
D of the target space, as we shall see later.

Before turning to the supersymmetry transformations, it is of interest to discuss pos-

sible additional isometries of hyperkähler cones that commute with supersymmetry. They

are characterized by Killing vectors kA
m(φ), labeled by indices m, n, p, etcetera. They

generate a group of motions, denoted by Ghyper, that leaves the complex structures invari-

ant so that they are called tri-holomorphic. Furthermore, they commute with SU(2) and

dilatations. These three properties are reflected in the following equations,

kC
m ∂CJ

ij
AB − 2∂[Ak

C
m J

ij
B]C = 0 ,

kij
B DBk

A
m = DBkij

A kB
m = Jij

A
B k

B
m

χA k
A

m = 0 . (3.9)

Such tri-holomorphic isometries can be gauged by coupling to the (electric and/or mag-

netic) gauge fields belonging to the vector multiplets, as we shall discuss in due course.2

The total isometry group of the hyperkähler space is thus the product of SU(2) times the

2As always, the dilatations and the SU(2) × U(1) symmetries will be gauged when coupling to the

corresponding gauge fields of conformal supergravity.
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group Ghyper generated by the Killing vectors kA
m. The structure constants of the latter

are denoted by fmn
p, and follow from the Lie bracket relation,3

kB
m ∂Bk

A
n − kB

n ∂Bk
A

m = −fmn
p kA

p . (3.11)

The infinitesimal transformations act on the hypermultiplet fields according to

δφA = gΛm kA
m(φ) ,

δζα + δφAΓA
α
β ζ

β = gΛm tm
α
β(φ) ζβ , (3.12)

where we introduced a generic coupling constant g and φ-dependent matrices tm
α
β(φ) which

take values in sp(nH+1), and are proportional to DAk
B

m. Explicit definitions will be given

later, but we already note that they satisfy the following relations,

DAtm
α
β =RAB

α
β k

B
m ,

[ tm, tn ]αβ = fmn
p (tp)

α
β + kA

m k
B

nRAB
α
β . (3.13)

This result is consistent with the Jacobi identity. The above results can be summarized by

noting that the linear combinations, Xm
α

β = δα
β k

A
mDA− tm

α
β, close under commutation

according to4

[Xm,Xn]
α

β = −fmn
pXp

α
β . (3.14)

One can show that the curl of J ij
AB k

B
m vanishes, so that these vectors can be solved

in terms of the derivative of the so-called Killing potentials, or moment maps, denoted by

µij
m. On the hyperkähler cone there are no integration constants, and one can explicitly

determine these potentials,

µij
m = −

1

2
kij

A k
A

m . (3.15)

This can easily be verified by showing that ∂Aµ
ij

m = J ij
AB k

B
m, making use of (3.9) and

the Killing equation given in (3.10). Using also (3.11) one derives the so-called equivari-

ance condition,

J ij
AB k

A
m k

B
n = −fmn

p µij
p . (3.16)

The Killing potentials scale with weight w = 2 under dilatations and transform covariantly

under the isometries and SU(2) transformations,

δµij
m =

(

gΛn kA
n + ΛSU(2)

k
m εlm kkl

A
)

∂Aµ
ij

m

=
(

− gΛn fnm
p µij

p + 2ΛSU(2)
(i

k µ
j)k

m

)

. (3.17)

3We note that derivatives of Killing vectors are constrained by the Killing equation, which induces

constraints on multiple derivatives, as is shown below,

DAkB + DBkA = 0 , DADBkC = RBCAE k
E

. (3.10)

4To be precise, the Xm are the generators acting on φ-dependent tangent-space tensors (provided the

matrix tm is replaced by the appropriate generator for the corresponding tensor representation).
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So far, supersymmetry played a central role, as most of the above results are implied

by the superconformal algebra imposed on the hypermultiplet fields. We refer the reader

to [32] for a full derivation along these lines. To define the supersymmetry transformations

one needs the notion of quaternionic vielbeine, which can convert the 4(nH+1) target-space

indices A,B, . . . to the tangent-space indices α, β, . . . , ᾱ, β̄ . . . carried by the fermions. All

quantities of interest can be expressed in terms of these vielbeine. For instance, the scalar

fields transform as follows under supersymmetry,

δφA = 2(γA
iᾱ ǭ

iζ ᾱ + γ̄Ai
α ǭiζ

α) , (3.18)

where the pseudoreal quantity γA
iᾱ(φ) corresponds to the (4nH + 4) × (4nH + 4) inverse

quaternionic vielbein. Its inverse is the vielbein denoted by V̄ iᾱ
A , which is needed for

writing down the supersymmetry transformation of the fermions. So we have,

V̄ iᾱ
A γA

jβ̄
= δi

j δ
ᾱ

β̄ ,

γA
iᾱV̄

jᾱ
B + γ̄Aj

α V α
Bi = δi

j δA
B . (3.19)

Here we emphasize that we use a notation (as elsewhere in this paper) where SU(2) indices

are raised and lowered by complex conjugation. The quaternionic vielbeine are covariantly

constant, e.g.,

DAγ
B
iᾱ = ∂Aγ

B
iᾱ + ΓAC

BγC
iᾱ − Γ̄A

β̄
ᾱ γ

B
iβ̄

= 0 . (3.20)

Observe that it is not necessary to introduce a SU(2) connection here. When coupling to

the superconformal fields, the SU(2) symmetry will be realized locally and a connection

will be provided by the gauge field Vµ
i
j of the Weyl multiplet. The fact that the vielbeine

are covariantly constant provides a relation between the Riemann curvature RABC
D and

the tangent-space curvature R̄AB
ᾱ

β̄,

RABC
D γC

iᾱ − R̄AB
β̄

ᾱ γ
D
iβ̄

= 0 . (3.21)

Both curvatures can actually be written in terms of

Wᾱβγ̄δ =
1

2
RABCD γ

A
iᾱ γ̄

iB
β γC

jγ̄ γ̄
jD
δ , (3.22)

which appears as the coefficient of the four-spinor term in the supersymmetric Lagrangian

(cf. (4.7)).

A typical feature of the superconformal hypermultiplets is that they can be formulated

in terms of local sections Ai
α(φ) of an Sp(nH +1)×Sp(1) bundle.5 This section is provided

by

Ai
α(φ) ≡ χB(φ)V α

Bi(φ) . (3.23)

Obviously the vielbeine can be re-obtained from these sections, as we easily derive,

DBAi
α = V α

Bi . (3.24)

5The existence of such an associated quaternionic bundle was established based on a general analysis of

quaternion-Kähler manifolds [36]. Here Sp(1) ∼= SU(2) denotes the corresponding R-symmetry subgroup of

the N = 2 superconformal group.
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We note a few relevant equations,

gAB DAAi
αDBAj

β = εij Ωαβ ,

gAB DAAi
αDBA

jβ̄ = δi
j Gαβ̄ , (3.25)

which defines two tensors, Ωαβ and Gαβ̄ , which are skew symmetric and hermitian, re-

spectively. Obviously both tensors are covariantly constant. We also note the following

relations,

Gᾱβ V
β
A i = εij Ωᾱβ̄ V̄

jβ̄
A = gAB γ

B
iᾱ ,

Gγ̄αΩ̄γ̄δ̄Gδ̄β = Ω̄αβ ,

Ωᾱβ̄Ω̄β̄γ̄ = − δᾱ
γ̄ ,

Ω̄αβ Ai
αAj

β = εijχ . (3.26)

The first one establishes the fact that the quaternionic vielbein V α
Ai is pseudoreal. Further-

more we note

Ω̄αβAi
αDBAj

β =
1

2
εijχB + kijB ,

Ω̄αβ DAAi
αDBAj

β =
1

2
εij gAB − Jij AB ,

Aiᾱ ≡ (Ai
α)∗ = εij Ω̄ᾱβ̄ Gβ̄γ Aj

γ . (3.27)

Let us now introduce the local Q- and S-supersymmetry transformations of the hyper-

multiplet fields, employing the sections Ai
α

δAi
α + δφBΓB

α
βAi

β = 2 ǭiζ
α + 2 εijG

αβ̄Ωβ̄γ̄ ǭ
jζ γ̄ ,

δζα + δφA ΓA
α
β ζ

β = /DAi
α ǫi +Ai

α ηi ,

δζ ᾱ + δφA Γ̄A
ᾱ
β̄ ζ

β̄ = /DAiᾱ ǫi +Aiᾱ ηi . (3.28)

The Weyl and chiral weights of these sections and the fermion fields are listed in table 2.

The reader can easily verify that these weight assignments are consistent with the above

supersymmetry transformations. The bosonic parts of the covariant derivatives on the

scalar and fermion fields is given by,

Dµφ
A = ∂µφ

A − bµ χ
A +

1

2
Vµ

i
k ε

jk kA
ij ,

DµAi
α = ∂µAi

α − bµAi
α +

1

2
Vµi

jAj
α + ∂µφ

AΓA
α

βAi
β ,

Dµζ
α = ∂µζ

α −
1

4
ωµ

abγab ζ
α −

3

2
bµζ

α +
1

2
iAµζ

α + ∂µφ
A ΓA

α
β ζ

β , (3.29)

where we have now introduced the superconformal gauge fields, in addition to the target-

space connections. The covariantization of the above derivatives with respect to Q- and

S-supersymmetry follows immediately from (3.28).
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field Ai
α ζα

w 1 3
2

c 0 −1
2

Table 2. Weyl and chiral weights of the hypermultiplet fields.

An expression for the generators tm associated with the tri-holomorphic Killing vectors

follows from requiring the invariance of the quaternionic vielbeine V α
Ai up to a target-

space rotation,

(tm)αβ =
1

2
V α

Ai γ̄
Bi
β DBk

A
m . (3.30)

The invariance implies that target-space scalars satisfy algebraic identities such as

t̄m
γ̄
ᾱGγ̄β + tm

γ
β Gᾱγ = 0 = t̄m

γ̄
[ᾱ Ωβ̄]γ̄ , (3.31)

which confirm that the matrices tm
α

β take values in sp(nH + 1). Furthermore we note

the relations,

kA
m V

α
Ai = kA

mDAAi
α = tm

α
β Ai

β ,

µijm = −
1

2
kAij k

A
m = −

1

2
Ω̄αβ Ai

α tm
β

γAj
γ . (3.32)

For a more complete list of identities we refer to [32].

4 Lagrangians

In this section we consider the various matter Lagrangians that are superconformally in-

variant. All these Lagrangians can be found in the literature (see, e.g., [4–6, 32]), including

some of the terms quartic in the fermions. We have not eliminated any auxiliary fields,

so that the results pertain to fully off-shell couplings, with the exception of the hyper-

multiplets. In the formula below, we have substituted the explicit expressions for the

dependent gauge fields associated with Lorentz transformations, conformal boosts and S-

supersymmetry. For these expressions we refer to the appendices in [29].

All Lagrangians given below can be viewed as matter Lagrangians in a given supercon-

formal supergravity background. However, the conformal supergravity background repre-

sents dynamical degrees of freedom which will mix with the matter degrees of freedom. For

the Lagrangian of the vector multiplets, physical fields can be identified that are invariant

under scale transformations and S-supersymmetry, so that we will be dealing with super-

gravity coupled to only n vector supermultiplets. The remaining vector multiplet acts as

a compensating field: its scalar and spinor degrees of freedom are not physical and only

the vector field and the corresponding triplet of auxiliary fields remain. For the hypermul-

tiplet Lagrangians, a similar rearrangement of degrees of freedom will take place. One of

the hypermultiplets will play the role of a compensator with respect to the local SU(2).
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The precise choice of the compensator multiplets is irrelevant, and the resulting theories

remain gauge equivalent.6 Therefore it is best to not make any particular choice for the

compensating multiplets at this stage and keep the formulae in their most symmetric form.

At the end one may then select fields that are invariant under certain local superconformal

transformations, so that the compensating fields decouple from the Lagrangian, or one may

simply adopt a convenient gauge choice.

The Lagrangian for the vector multiplets is decomposed into four separate parts,

Lvector = L
(1)
kin + L

(2)
kin + Laux + Lconf , (4.1)

which are each separately consistent with electric/magnetic duality. We stress that this is

not a invariance property. Under generic electric/magnetic duality, one obtains in general a

different Lagrangian based on a function F̃ (X̃) that is not identical to the original function.

Only the subgroup that satisfies (2.29) constitutes an invariance. The only terms that have

been suppressed in (4.1) are quartic in the fermion fields and separately consistent with

respect to electric/magnetic duality.

The first term in (4.1) contains the kinetic terms of the scalar and spinor fields,

e−1L
(1)
kin = − iΩMN DµX

M DµX̄N +
1

4
iΩMN

[

Ω̄iM /DΩi
N − Ω̄i

M /DΩiN
]

−
1

2
iΩMN

[

ψ̄µ
i /DX̄Mγµ Ωi

N − ψ̄µi /DX
Mγµ ΩiN

]

. (4.2)

The kinetic terms for the vector fields and their moment couplings to the tensor and

fermion fields are contained in L
(2)
kin,

e−1L
(2)
kin =

1

4
i
[

FΛΣ F
−Λ
µν F−µνΣ − F̄ΛΣ F

+ Λ
µν F+µνΣ

]

+
[

O−
µνΛF

−µνΛ −NΛΣ O−
µνΛO

−µν
Σ + h.c.

]

, (4.3)

with O−
µνΛ as defined in (2.24). Here we included a term quadratic in the tensors O, such

that the resulting expression is consistent with respect to electric/magnetic duality.7 Note

that one can explicitly construct the field strength tensors GµνΛ from (4.1), according to

definition (2.5). The result coincides precisely with the expression given by (2.23), as was

claimed previously.

The terms associated with the auxiliary fields Yij
Λ are given in Laux [7],

e−1Laux =
1

8
NΛΣ

(

NΛΓYij
Γ +

1

2
i(FΛΓΩ Ω̄i

ΓΩj
Ω − F̄ΛΓΩ Ω̄kΓΩlΩεikεjl)

)

×

(

NΣΞY
ijΞ +

1

2
i(FΣΞ∆ Ω̄m

ΞΩn
∆εimεjn − F̄ΣΞ∆ Ω̄iΞΩj∆)

)

. (4.5)

6The hypermultiplet compensator can be replaced by a tensor multiplet, but this option will not be

considered here.
7To appreciate the presence of this term, we note that (4.3) can be written as

e
−1

L
(2)
kin =

1

4
i
ˆ

F
−Λ
µν G

−µν
Λ + h.c.

˜

− i
ˆ

O
−µν

Σ N
ΣΛ

`

G
−

µνΛ − F̄ΛΓ F
−

µν
Λ

´

+ h.c.
˜

. (4.4)

Modulo the field equation of the vector fields, the first term can be written as a total derivative, whereas the

second term is manifestly consistent with electric/magnetic duality as follows from (2.14), (2.30) and (2.31).
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Note that the field equations for the auxiliary fields Yij
Λ indeed imply the pseudo-reality of

ZijΛ, as was claimed below (2.25). The last part of the Lagrangian describes the remaining

couplings of the vector multiplet fields to conformal supergravity,

e−1Lconf =
1

6
χvector

[

R+ (e−1εµνρσψ̄µ
iγνDρψσi − ψ̄µ

iψν
j T µν

ij + h.c.)

]

− χvector

[

D +
1

2
ψ̄µ

iγµχi +
1

2
ψ̄µiγ

µχi

]

−

(

∂χvector

∂XΛ

[

1

3
Ω̄i

ΛγµνDµψν
i − Ω̄i

Λχi

]

+ h.c.

)

−

(

∂χvector

∂XΛ

[

1

4
e−1εµνρσψ̄µiγνψρ

i DσX
Λ +

1

48
ψ̄iµγ

µγρσΩj
Λ T ijρσ

]

+ h.c.

)

,

(4.6)

where χvector = i(XΛF̄Λ − X̄ΛFΛ) = NΛΣX
ΛX̄Σ = iΩMNX

MX̄N . Note that

∂χvector/∂X
Λ = NΛΣX̄

Σ.

We now exhibit the superconformal Lagrangian for hypermultiplets [32, 35],

e−1Lhyper =
1

6
χhyper

[

R+ (e−1εµνρσψ̄µ
iγνDρψσi −

1

4
ψ̄µ

iψν
j T µν

ij + h.c.)

]

+
1

2
χhyper

[

D +
1

2
ψ̄µ

iγµχi +
1

2
ψ̄µiγ

µχi

]

,

−
1

2
Gᾱβ DµAi

β DµAiᾱ −Gᾱβ(ζ̄ ᾱ /Dζβ + ζ̄β /Dζ ᾱ) −
1

4
Wᾱβγ̄δ ζ̄

ᾱγµζ
β ζ̄ γ̄γµζδ

−
∂χhyper

∂φA

(

γA
iᾱ

[

2

3
ζ̄ ᾱγµνDµψν

i + ζ̄ ᾱχi −
1

6
ζ̄ ᾱγµψνj T

µνij

]

+ h.c.

)

+

[

1

16
Ω̄αβ ζ̄

αγµνTµνijε
ijζβ −

1

2
ζ̄αγµγνψµi

(

ψ̄ν
iGαβ̄ ζ

β̄ + εij Ω̄αβ ψ̄νjζ
β
)

+Gᾱβ ζ̄
βγµ /DAiᾱψµi −

1

4
e−1ǫµνρσGᾱβ ψ̄µ

iγνψρj Ai
βDσA

jᾱ + h.c.

]

, (4.7)

where Wᾱβγ̄δ was defined in (3.22), and the hyperkähler potential was introduced in sec-

tion 3. Since this Lagrangian is superconformally invariant, the target-space geometry is

that of a hyperkähler cone, which is a cone over a so-called tri-Sasakian manifold. The

latter is a fibration of Sp(1) over a 4nH-dimensional quaternion-Kähler manifold Q4nH .

Hence the hyperkähler cone can be written as R+ × (Sp(1) × Q4nH).

Also tensor multiplets can be coupled to conformal supergravity (see, e.g. [37]), but

since those multiplets are not involved in the gaugings they will not be considered here.

5 Gauge invariance, electric and magnetic charges, and the embedding

tensor

Possible gauge groups must be embedded into the rigid invariance group Grigid of the

theory. In the context of this paper, we are in principle dealing with a product group,
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Grigid = Gsymp×Ghyper, where Gsymp refers to the invariance group of the electric/magnetic

dualities, which acts exclusively on the vector multiplets, and Ghyper refers to the possi-

ble invariance group of the hypermultiplet sector generated by the tri-holomorphic Killing

vectors.8 Here we first concentrate on the gauge group embedded into Gsymp, which con-

stitutes a subgroup of the electric/magnetic duality group Sp(2n + 2; R) related to the

matrices considered in (2.7). The corresponding gauge group generators thus take the

form of (2n+2)-by-(2n+2) matrices TM . Since we are assuming the presence of both elec-

tric and magnetic gauge fields, these generators decompose according to TM = (TΛ, T
Λ).

Obviously the gauge-group generators TMN
P must generate a subalgebra of the Lie algebra

associated with Sp(2n + 2; R), which implies,

TM [N
Q ΩP ]Q = 0 , (5.1)

or, in components,

TMΛ
Σ = −TM

Σ
Λ , TM [ΛΣ] = 0 = TM

[ΛΣ] . (5.2)

Denoting the gauge group parameters by ΛM , infinitesimal variations of generic 2(n + 1)-

dimensional Sp(2n + 2; R) vectors YM and ZM thus take the form

δY M = −gΛN TNP
M Y P , δZM = gΛN TNM

P ZP , (5.3)

where g denotes a universal gauge coupling constant.9 Covariant derivatives can easily be

constructed, and read,10

DµY
M = ∂µY

M + gWµ
N TNP

M Y P

= ∂µY
M + gWµ

Λ TΛP
M Y P + gWµΛ T

Λ
P

M Y P , (5.4)

and similarly for DµZM . The gauge fields then transform according to

δWµ
M = DµΛM = ∂µΛM + g TPQ

MWµ
P ΛQ . (5.5)

Note that, for constant parameters ΛM , (5.5) will only be consistent with (5.3) provided

that TMN
P is antisymmetric in [MN ]. Nevertheless, as we shall see, antisymmetry of

TMN
P is not necessary in the general case. Rather, it is sufficient that the TMN

P are

subject to the so-called representation constraint [3],

T(MN
Q ΩP )Q = 0 =⇒



















T (ΛΣΓ) = 0 ,

2T (ΓΛ)
Σ = TΣ

ΛΓ ,

T(ΛΣΓ) = 0 ,

2T(ΓΛ)
Σ = TΣ

ΛΓ .

(5.6)

8Observe that the R-symmetry group, SU(2) × U(1), does not play a role here, as this group is already

realized locally in the coupling to the superconformal background.
9The generators follow by expanding the symplectic matrix appearing in (2.7) and (2.9) about the

identity. Comparing with (5.3), one establishes the correspondence, UΛ
Σ ≈ δΛ

Σ − gΛMTMΣ
Λ, VΛ

Σ
≈

δΛ
Σ + gΛMTMΛ

Σ, ZΛΣ
≈ −gΛMTM

ΛΣ, WΛΣ ≈ −gΛMTMΛΣ.
10In this section and in section 6, we suppress the covariantization with respect to superconformal sym-

metries. Starting with section 7 the derivative Dµ will indicate covariantization with respect to Lorentz,

dilatation, and chiral symmetries, and with the newly introduced gauge symmetries associated with the

fields Wµ
M .
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which does not imply antisymmetry of TMN
P in [M,N ]. However, for the conventional

electric gaugings, where the magnetic gauge fields AµΛ decouple and where TΛ
N

P = 0 and

TΛ
ΣΓ = 0, (5.6) does imply that TΓΣ

Λ is antisymmetric in [ΓΣ].

Note that full covariance of the derivative defined in (5.4) has not yet been established

to order g2, since we have not discussed the closure of the gauge group generators. This

point will be addressed later in this section.

Let us first consider some generic features of the infinitesimal transformations (5.3).

Combining the two equations (2.10) and (2.29) leads to an expression for F (X̃) − F (X),

which, for an infinitesimal symmetry transformation δXΛ = −gΛMTMN
ΛXN , yields

FΛ δX
Λ = −

1

2
gΛM

(

TMΛΣX
ΛXΣ + TM

ΛΣFΛFΣ

)

. (5.7)

Substituting the expression for δXΛ then leads to the condition [5],

TMN
QΩPQX

NXP = TMΛΣX
ΛXΣ − 2TMΛ

ΣXΛFΣ − TM
ΛΣFΛFΣ = 0 . (5.8)

which must hold for general XΛ. The solution of this condition will specify all continuous

symmetries of the Lagrangian. There are two more useful identities that follow from it.

First one takes the derivative of (5.8) with respect to XΛ,

TMNΛX
N = FΛΣ TMN

ΣXN , (5.9)

and subsequently applies a supersymmetry transformation leading to,

TMNΛΩi
N = FΛΣ TMN

ΣΩi
N + FΛΣΓ Ωi

Σ TMN
ΓXN . (5.10)

The latter two identities show that the gauge covariantization of the kinetic term for the

scalars and spinors in (4.2) will not involve TMΛΣ. We refer to [7] for further details about

these covariant derivatives.

By introducing a vector UM = (UΛ, FΛΣU
Σ), it is possible to cast (5.9) in the symplec-

tically covariant form, TMN
Q ΩPQX

NUP = 0. This equation can be rewritten by making

use of the representation constraint (5.6). Note, for instance, the following identities,

T(MN)
P XM UN =0 ,

TMN
Q ΩPQ X̄

MXNXP =TMN
Q ΩPQ X̄

MXN X̄P = 0 ,

TMN
ΛXM X̄N NΛΣX

Σ =0 . (5.11)

As a side remark we note that the Killing potential (or moment map) associated with

the isometries considered above, is related to

νM = g TMN
QΩPQX̄

NXP . (5.12)

Its derivative takes the form ∂ΛνM = iNΛΣ δX̄
Σ, as follows from making use of (5.9).

Finally we return to the gauge transformations of the auxiliary fields Yij
Λ, which can

be derived by requiring that Laux written in (4.5) is gauge invariant. A straightforward

calculation leads to the following result,

δYij
Λ = −

1

2
gΛMTMN

Λ(Zij
N + εikεjl Z

klN) , (5.13)
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where Zij
M was defined in (2.25). Note that this result is in accord with the elec-

tric/magnetic dualities suggested for Zij
M .

In the remainder of this section we consider the gauge group embedding in more detail.

The embedding into the rigid invariance group Grigid = Gsymp ×Ghyper is encoded in a so-

called embedding tensor. This tensor must be specified separately for the vector multiplet

and for the hypermultiplet sector, so that we have the following definitions,

TMN
P =ΘM

a taN
P ,

kA
M =ΘM

m kA
m , TM

α
β = ΘM

m tm
α

β , (5.14)

where the ta denote the generators of Gsymp, and kA
m and tm the tri-holomorphic Killing

vectors and the corresponding matrices of the group Ghyper. Because these generators be-

long to different groups and act on different multiplets, they carry different indices (namely,

indices M,N, . . . for the vector multiplets and indices α, β, . . . for the hypermultiplets). The

embedding tensor can be further decomposed into electric and magnetic components, ac-

cording to ΘM
a = (ΘΛ

a,ΘΛ a), and ΘM
m = (ΘΛ

m,ΘΛ m). With these definitions, we can

now also present the gauge-covariant derivatives on the hypermultiplet fields (we remind

the reader that in this section and in the next one, we suppress the covariantization with

respect to the superconformal symmetries),

Dµφ
A = ∂µφ

A − gWµ
M kA

M ,

DµAi
α = ∂µAi

α + ∂µφ
A ΓA

α
β Ai

β − gWµ
M TM

α
βAi

β ,

Dµζ
α = ∂µζ

α + ∂µφ
A ΓA

α
β ζ

β − gWµ
MTM

α
β ζ

β . (5.15)

In particular the covariant derivative of the spinor field is not entirely straightforward, in

view of the fact that matrices tm
α

β depend on the fields φA. However, because the Jacobi

identity is satisfied on these matrices, there are no further complications associated with

this feature (see (3.13)).

The gauge group generators TM should close under commutation for both representa-

tions. This leads to two equations that depend quadratically on the embedding tensor [38],

fab
c ΘM

a ΘN
b + (ta)N

P ΘM
aΘP

c = 0 ,

fmn
p ΘM

m ΘN
n + (ta)N

P ΘM
aΘP

p = 0 , (5.16)

where fab
c and fmn

p are the structure constants of Gsymp and Ghyper, respectively.11 The

above equations imply that the gauge algebra generators close according to

[TM , TN ] = −TMN
P TP , kB

M∂Bk
A

N − kB
N∂Bk

A
M = TMN

P kA
P , (5.17)

so that the structure constants of the gauge group are contained in −TMN
P ≡

−ΘM
a (ta)N

P , as is required by the gauge group embedding in Gsymp. This observation was

in fact used as input when deriving (5.16). Note, however, that the gauge group structure

11For convenience we have ignored that the matrices tm depend on the scalar fields (see, (3.14), and the

preceding text).
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constants are not necessarily identical to −TMN
P , as they may differ by terms that vanish

upon contraction with the embedding tensor ΘP
a or ΘP

m. This explains why the TMN
P

are not necessarily antisymmetric in M,N .

Here and henceforth, the embedding tensor will be regarded as a spurionic object

which we allow to transform under the rigid invariance group Grigid, so that the Lagrangian

and transformation rules will remain formally invariant. Therefore the embedding tensor

can be assigned to a (not necessarily irreducible) representation of Grigid. Eventually the

embedding tensor will be frozen to a constant, so that the invariance under Grigid will

be broken. In this context, it is relevant to note that (5.16) implies that the embedding

tensor is invariant under the gauge group. The gauge group is thus contained in the

corresponding stability subgroup of Grigid. From symmetrizing the first constraint (5.16)

in (MN) and making use of the linear conditions (5.6) and (5.1), one further derives that

ΩMN ΘM
aΘN

b (tb)P
Q must vanish. Hence,

ΩMN ΘM
aΘN

b = 0 ⇐⇒ ΘΛ [aΘΛ
b] = 0 , (5.18)

which implies that the charges in the vector multiplet sector are mutually local, so that an

electric/magnetic duality must exist that converts all the charges to electric ones. Likewise,

one derives from the second constraint (5.16),

ΩMN ΘM
aΘN

m = 0 ⇐⇒ ΘΛ [aΘΛ
m] = 0 , (5.19)

which implies that the charges in the hypermultiplet sector are mutually local with the

vector multiplet charges. It is clear that gauge fields that couple exclusively to charges

associated to hypermultiplets are not restricted by (5.18) and (5.19). Their corresponding

gauge groups are necessarily abelian. To ensure that those charges are also mutually local,

we must impose an additional constraint,

ΩMN ΘM
mΘN

n = 0 ⇐⇒ ΘΛ [mΘΛ
n] = 0 , (5.20)

which is obviously not related to the closure of the gauge algebra. As it turns out, the

relations (5.18), (5.19) and (5.20) play an crucial role when discussing the Lagrangian.

Generically only a subset of the gauge fields will be involved in the gauging, so that

the embedding tensor will project out a restricted set of (linear combinations of) gauge

fields; the rank of the tensor determines the dimension of the gauge group, up to possible

central extensions associated with abelian factors.

As stressed before, the generators TMN
P are not required to be antisymmetric inM,N .

The symmetric part can be written as follows,

T(MN)
P = ZP,a da MN , (5.21)

with

da MN ≡ (ta)M
P ΩNP ,

ZM,a ≡
1

2
ΩMNΘN

a =⇒

{

ZΛa= 1
2ΘΛa ,

ZΛ
a=−1

2ΘΛ
a ,

(5.22)
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so that da MN defines an Sp(2n+ 2,R)-invariant tensor symmetric in (MN). Likewise one

can introduce a similar tensor ZM,m, relevant for the hypermultiplets, by

ZM,m ≡
1

2
ΩMNΘN

m =⇒

{

ZΛm= 1
2ΘΛm ,

ZΛ
m=−1

2ΘΛ
m ,

(5.23)

Subsequently we note that the constraints (5.18), (5.19) and (5.20) can now be written as,

ZM,a ΘM
b = 0 = ZM,a ΘM

m , ZM,m ΘM
a = 0 = ZM,m ΘM

n . (5.24)

The latter implies that ZM,a and ZM,m vanish when contracted with the gauge-group

generators TM . Because of these constraints, only the antisymmetric part of TMN
P will

appear in the commutation relation (5.17). What remains is to consider the Jacobi identity

on the generators TM . Explicit calculation based on (5.17) leads to

T[NP
R TQ]R

M =
2

3
ZM,a daR[N TPQ]

R , (5.25)

which shows that the Jacobi identity holds up to terms that vanish upon contraction

with the embedding tensor. In the following section we will describe how to introduce a

consistent gauging in this non-standard situation.

6 The gauge hierarchy

To compensate for the lack of closure noted in the previous section, and, at the same

time, to avoid unwanted degrees of freedom, the strategy is to introduce an extra gauge

invariance for the gauge fields, in addition to the usual nonabelian gauge transformations,

δWµ
M = DµΛM − g

[

ZM,a Ξµ a + ZM,m Ξµm

]

, (6.1)

where the ΛM are the gauge transformation parameters and the covariant derivative reads,

DµΛM = ∂µΛM + g TPQ
M Wµ

P ΛQ. The transformations proportional to Ξµ a and Ξµ m

enable one to gauge away those vector fields that are in the sector where the Jacobi identity

is not satisfied (this sector is perpendicular to the embedding tensor by virtue of (5.24)).

Note that the covariant derivative is invariant under the transformations parametrized by

Ξµ a and Ξµ m, because of the contraction of the gauge fields Wµ
M with the generators TM .

However, gauge transformations do no longer form a group by themselves, as is reflected

in the commutation relation,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξa 3) , (6.2)

where

Λ3
M = g T[NP ]

MΛN
1 ΛP

2 ,

Ξ3µ a = daNP (ΛN
1 DµΛP

2 − ΛN
2 DµΛP

1 ) , (6.3)

with TMa
b = −ΘM

cfca
b the gauge group generators in the adjoint representation of Gsymp.

As it turns out, this commutation relation forms the beginning of a full hierarchy of vector
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and tensor gauge fields that form a closed algebra [39, 40]. Other commutators involving

δ(Λ), δ(Ξa) and δ(Ξm) vanish on the gauge fields Wµ
Λ, so that those can only be uncovered

for the higher-rank tensor gauge fields that we will introduce shortly.

Non-abelian field strengths associated with the gauge fields Wµ
M follow from the Ricci

identity, [Dµ,Dν ] = −gFµν
M TM , and depend only on the antisymmetric part of TMN

P ,

Fµν
M = ∂µWν

M − ∂νWµ
M + g T[NP ]

M Wµ
NWν

P . (6.4)

Because of the lack of closure expressed by (5.25), these field strengths do not satisfy the

Palatini identity,

δFµν
M = 2D[µδWν]

M − 2g T(PQ)
M W[µ

P δWν]
Q , (6.5)

under arbitrary variations δWµ
M , because of the last term, which cancels upon multipli-

cation with the generators TM . The result (6.5) shows in particular that Fµν
M transforms

under the combined gauge transformations (6.1) as

δFµν
M = gΛPTNP

M Fµν
N − 2g ZM,a

(

D[µΞν]a + daPQW[µ
P δWν]

Q
)

− 2g ZM,m D[µΞν]m ,

(6.6)

and is therefore not covariant. In deriving this one makes use of the fact that the tensors

ZM,a and ZM,m are invariant under the gauge group. The covariant derivative on Ξνa is

defined by DµΞνa = ∂µΞνa − gWµ
MTMa

bΞνb, and similarly for Ξνm. These tensor fields

belong to the adjoint representation of the group Gsymp.

The standard strategy is therefore to define modified field strengths,

Hµν
M = Fµν

M + g
[

ZM,aBµν a + ZM,mBµν m

]

, (6.7)

by introducing new tensor fields Bµν a and Bµν m with suitably chosen gauge transformation

rules, so that covariant results are obtained. This implies that the variation of the tensor

fields should in any case absorb the unwanted non-covariant terms in (6.6). At this point

we recall that the invariance transformations in the ungauged case transform on the field

strengths Gµν
M , defined in (2.6), according to a subgroup of Sp(2n+ 2,R) (cf. (2.7)). The

field strengths Gµν
M consist of the abelian field strengths Fµν

Λ and the dual field strengths

GµνΛ. The latter were decomposed in (2.23) in the form G−
µνΛ = FΛΣ F

−
µν

Σ − 2iO−
µνΛ.

Obviously, in the presence of the non-abelian gauge interactions, the abelian field strengths

Fµν
Λ should now be replaced by (6.7). Hence it is natural to define new covariant field

strengths according to

Gµν
M =

(

Hµν
Λ

GµνΛ

)

(6.8)

with

G−
µν

Λ = H−
µν

Λ ,

G−
µνΛ = FΛΣ H−

µν
Σ − 2iO−

µνΛ . (6.9)

Just as in section 2, there exist corresponding supercovariant field strengths Ĝµν
M that

will appear in the supersymmetry transformations of the vector multiplet fermion fields.
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Those will be discussed in the next section. Just as before, the field strengths Ĝµν
M and

Gµν
M will only differ by fermionic bilinears and by terms proportional to the tensor field

of the Weyl multiplet.

Following [3] we subsequently introduce the following transformation rule for Bµνa and

Bµνm (contracted with ZM,a and ZM,m, respectively, because only these combinations will

appear in the Lagrangian),

ZM,a δBµν a = 2ZM,a
(

D[µΞν]a + da NPW[µ
NδWν]

P
)

− 2T(NP )
MΛPGµν

N ,

ZM,m δBµν m = 2ZM,m D[µΞν]m . (6.10)

Note that Bµν a has variations proportional to Ξµm through the term δWµ
M (cf. (6.1)).

As a result of (6.10) the modified field strengths (6.7) are invariant under tensor gauge

transformations. Under the vector gauge transformations we derive the following result,

δG−
µν

Λ = − gΛPTPN
Λ G−

µν
N − gΛPTΓ

P
Λ (G−

µν −H−
µν)Γ ,

δG−
µνΛ = − gΛPTPNΛ G−

µν
N − g FΛΣ ΛPTΓ

P
Σ (G−

µν −H−
µν)Γ ,

δ(G−
µν −H−

µν)Λ = gΛP (TΓ
PΛ − TΓ

P
Σ FΣΛ) (G−

µν −H−
µν)Γ . (6.11)

Hence δGµν
M = −gΛPTPN

M Gµν
N , just as the variation of the abelian field strengths

Gµν
M in the absence of charges, up to terms proportional to ΘΛ,a(Gµν −Hµν)Λ. According

to [3], the latter terms represent a set of field equations, and so the last equation of (6.11)

expresses the well-known fact that, under a symmetry, field equations transform into field

equations. As a result the gauge algebra on the tensors GµνM closes according to (6.2), up

to the same field equations.

In order that the Lagrangian corresponding to (4.1) becomes invariant under vector and

tensor gauge transformations, we have to make a number of changes. First of all, we replace

the covariant derivatives on the scalars and spinors by gauge-covariant derivatives. This

ensures the invariance of L
(1)
kin, Lconf and Lhyper, given in (4.2), (4.6) and (4.7), respectively.

The Lagrangian for the auxiliary fields (4.5) is already gauge-invariant. In the following

we therefore concentrate on L
(2)
kin (4.3) which depends on the abelian field strengths Fµν

Λ.

These abelian field-strengths are now replaced by Hµν
Λ, so that

Gµν Λ = ie εµνρσ
∂Lvector

∂Hρσ
Λ
. (6.12)

The Lagrangian L
(2)
kin therefore reads,

e−1L
(2)
kin =

1

4
i
[

FΛΣ H−Λ
µν H−Σµν − F̄ΛΣ H+Λ

µν H+µνΣ
]

+
[

O−
µνΛH

−µνΛ −NΛΣO−
µνΛO

−µν
Σ + h.c.

]

. (6.13)

It is separately invariant under the tensor gauge transformations, because the tensors H

are invariant.

However, the Lagrangian (4.1) is not invariant under the vector gauge transformations.

To establish this one has to take into account that also the other fields of the vector
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multiplets transform under the gauge group. For instance, there are contributions from

infinitesimal gauge transformations of FΛΣ and OµνΛ, which follow from (2.30) and (2.31),

δFΛΣ = gΛM
(

− TMΛΣ + 2TM(Λ
ΓFΣ)Γ + FΛΓTM

ΓΞFΞΣ

)

,

δO−
µνΛ = gΛMO−

µνΣ

(

TMΛ
Σ + TM

ΣΓFΓΛ

)

. (6.14)

Nevertheless, it was shown in [3] that this is still not sufficient for gauge invariance, and it

is necessary to introduce an additional, universal, term to the Lagrangian, equal to,

Ltop =
1

8
ig εµνρσ

(

ΘΛaBµν a + ΘΛmBµν m

)

×

(

2 ∂ρWσ Λ + gTMN ΛWρ
MWσ

N −
1

4
gΘΛ

bBρσ b −
1

4
gΘΛ

nBρσ n

)

+
1

3
ig εµνρσTMN ΛWµ

MWν
N

(

∂ρWσ
Λ +

1

4
gTPQ

ΛWρ
PWσ

Q

)

+
1

6
ig εµνρσTMN

ΛWµ
MWν

N

(

∂ρWσΛ +
1

4
gTPQΛWρ

PWσ
Q

)

. (6.15)

The first term represents a topological coupling of the anti-symmetric tensor fields with

the magnetic gauge fields; the last two terms are a generalization of the Chern-Simons-like

terms that were first found in [6].

Under arbitrary variations of the vector and tensor fields, (6.13) and (6.15) yield (up

to total derivative terms),

e−1
(

δL
(2)
kin + δLtop

)

= −
1

4
ig
(

G+µνM −H+µνM
)

ΘM
a(δBµνa − 2daPQWµ

P δWν
Q)

−
1

4
ig
(

G+µνM −H+µνM
)

ΘM
m δBµνm

+ iG+µνMΩMN DµδWν
N + h.c. . (6.16)

Under the tensor gauge transformations this variation becomes equal to,

e−1
(

δL
(2)
kin + δLtop

)

= igH+µνM
[

ΘM
aDµΞνa + ΘM

mDµΞνm

]

+ h.c. . (6.17)

We already demonstrated that L
(2)
kin is separately invariant under tensor gauge transfor-

mations, so that the above terms originate exclusively from the variation of Ltop. The

expression (6.17) turns out to be equal to a total derivative because there exists a Bianchi

identity,

D[µHνρ]
M =

1

3
g
[

ZM,a Hµνρ a + ZM,m Hµνρ m

]

, (6.18)

and because the embedding tensor is gauge invariant. Here the gauge-covariant field

strengths of the tensor fields are defined as,

Hµνρ a =3D[µBνρ] a + 6 da NP W[µ
N

(

∂νWρ]
P +

1

3
gT[RS]

PWν
RWρ]

S + (G −H)νρ]
P

)

,

Hµνρ m =3D[µBνρ] m , (6.19)
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where DµBνρa = ∂µBνρa − gWµ
MTMa

bBνρb, and likewise for DµBνρm. The fully gauge-

covariant derivative of Hµν
M takes the form,

DρHµν
M = ∂ρHµν

M + gWρ
P TPN

M Gµν
N + gWρ

P TNP
M (G −H)µν

N

= ∂ρHµν
M + gWρ

P TPN
M Hµν

N + 2 gWρ
P ZM,adaPN (G −H)µν

N , (6.20)

Observe that the covariantization proportional to (G − H)µν
N is not generated by par-

tially integrating the right-hand side of (6.17), but it vanishes upon contraction with the

embedding tensor. So does the right-hand side of (6.18), so that (6.17) is indeed a total

derivative.

As was mentioned before, the combined gauge invariance of the vector and tensor

gauge fields are important to ensure that the number of physical degrees of freedom will

not change by the introduction of the magnetic vector gauge fields and the tensor gauge

fields [3]. The combined gauge algebra is consistent for the tensor fields upon projection

with the embedding tensor, which is sufficient because the action depends only on these

projected fields. If this were not the case, new tensor fields of higher rank would have been

required [39]. The projection with the embedding tensor will determine in which fields the

physical degrees of freedom can reside. The precise way in which the number of physical

degrees of freedom are accounted for is therefore rather subtle. From (6.16) it is indeed

clear that the components of the tensor fields that are projected to zero by multiplication

with ΘΛa or ΘΛm, are simply not present in the action. Their absence can be regarded as

the result of an additional gauge invariance. In addition, there are transformations of the

tensor fields linear in (G −H)µνΛ that leave the Lagrangian invariant [7, 13],

ΘΛaδBµνa = ∆
[ΛΣ]
1 (G −H)+µνΣ + h.c. ,

ΘΛaδBµνa = ∆
(ΛΣ)ρ
2 [µ (G −H)ν]ρΣ , (6.21)

where ∆ΛΣ
1 is an arbitrary complex parameter, and ∆ΛΣρ

2 µ is real and traceless. Similar

transformations exist for variations contracted with ΘΛm. Often these transformations

emerge when verifying the validity of the supersymmetry algebra, something that we will

discuss in section 7.

A similar situation arises with the magnetic gauge fields WµΛ. Under variations of the

gauge fields Wµ
M one derives,

δL
(2)
kin + δLtop =

1

2
i εµνρσ DνGρσ

MΩMNδWµ
N , (6.22)

where L
(2)
kin was defined in (6.13), up to a total derivative and up to terms that vanish as a

result of the field equation for Bµν a. Substituting (6.18) we can rewrite (6.22) as follows,

δL
(2)
kin + δLtop =

1

2
i εµνρσ

[

−DνGρσΛ δWµ
Λ +

1

6
g
(

Hνρσa ΘΛa + Hνρσm ΘΛm
)

δWµΛ

]

. (6.23)

Because the minimal coupling of the gauge fields to matter fields is always proportional to

the embedding tensor, the full Lagrangian does not change under variations of the magnetic
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gauge fields that are projected to zero by the embedding tensor components ΘΛa or ΘΛm,

up to terms that are generated by the variations of the tensor fields through the ‘universal’

variation, δBµνa = 2 daPQW[µ
P δWν]

Q.

All these gauge symmetries have a role to play in balancing the degrees of freedom.

In [3] a precise accounting of all gauge symmetries was bypassed in the analysis. Observe

that not all these symmetries have a bearing on the dynamical modes of the theory as they

also act on fields that only play an auxiliary role.

7 General gaugings: the superconformal algebra and the Lagrangian

When switching on a gauging there are several qualitative changes that are of interest. First

of all, the superconformal algebra will no longer be realized off shell (i.e. without using the

equations of motion) in the vector multiplet sector, at least for gaugings with magnetic

charges. Only for the Weyl multiplet the closure remains realized off shell. Naturally

a generic gauging induces the presence of vector multiplet fields into the hypermultiplet

supersymmetry transformations. It is therefore not surprising that also the vector multiplet

transformations will generically acquire terms proportional to the hypermultiplet fields. In

this section we will present the full transformation rules that include new terms of order

g, and subsequently we will re-establish the closure for general gaugings. As it turns out,

additional symmetries such as (6.21), are relevant for the closure. This feature is well

known from previous applications of the embedding tensor formalism.

A second, not unrelated, feature is that the Lagrangian must be modified by including

masslike terms for the fermions proportional to g, and a scalar potential proportional to

g2. The explicit expressions for these terms, which are relevant for many applications,

will be presented at the end of this section. These modifications are familiar from N = 2

supergravity theories with purely electric charges [4, 6, 32].

Rigid N = 2 supersymmetric theories with both electric and magnetic charges, have

been presented in [7], and it remains to complete these results in a fully superconformal

setting. It is clear that the modification of the results derived in [7] must be relatively

minor. The supersymmetry transformations of the matter fields will now become covariant

with respect to the superconformal symmetries, while at the same time they should remain

in accord with the known results for rigid theories. Modifications that supersede previous

work will therefore mainly involve terms proportional to the gravitino fields. The most

conspicuous ones are those appearing in the supersymmetry transformations of the tensor

fields Bµνa and Bµνm.

To exhibit this in more detail, let us first present the full Q- and S-supersymmetry

transformations for the hypermultiplet fields. They follow straightforwardly upon super-

covariantizing the rules presented in section 3, including the terms of order g that were

already found in [7],

δφA = 2 (γA
iᾱ ǭ

iζ ᾱ + γ̄Ai
α ǭiζ

α) ,

δAi
α + δφΓA

α
βAi

β = 2 ǭiζ
α + 2 εijG

αβ̄Ωβ̄γ̄ ǭ
jζ γ̄ ,

δζα + δφA ΓA
α
β ζ

β = /DAi
α ǫi + 2gXM TM

α
βAi

β εijǫj +Ai
α ηi . (7.1)
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where Dµ denotes the derivative fully covariantized with respect to all the superconfor-

mal transformations and the gauge symmetries. Likewise we present the full Q- and S-

supersymmetry transformations for the vector multiplet fields,

δXM = ǭiΩi
M ,

δΩi
M = 2 /DXM ǫi + Ẑij

M ǫj +
1

2
γµν Ĝ−

µν
Mεijǫ

j

− 2g TPN
MX̄PXNεijǫ

j + 2 igΩMNµijNǫ
j + 2XMηi ,

δWµ
M = εij ǭi(γµΩj

M + 2ψµjX
M ) + εij ǭ

i(γµΩj M + 2ψµ
jX̄M ) ,

δYij
Λ = 2 ǭ(i /DΩj)

Λ + 2 εikεjlǭ
(k /DΩl)Λ

− 4g TMN
Λ
[

Ω̄(i
M ǫkεj)k X̄

N − Ω̄kMǫ(iεj)k X
N
]

+ 4 ig kAΛ
[

εk(i γj)ᾱAǭ
kζ ᾱ + εk(i ǭj)ζ

α γ̄k
αA

]

. (7.2)

Here the moment maps are defined by,

µijM = ΘM
mµijm , (7.3)

and the symplectic vector Ẑij
M appearing in δΩi

M is given by,

Ẑij
M =

(

Yij
Λ

FΛΣ Yij
Σ − 1

2FΛΣΓ Ω̄i
ΣΩj

Γ + 2 ig[µijΛ + FΛΣ µij
Σ]

)

. (7.4)

This expression differs from the previous one for the ungauged theory, given in (2.25),

by the presence of the moment maps originating from the hypermultiplet sector. This

implies that the original pseudo-reality condition on ZijΛ must be replaced by a pseudo-

reality condition on ẐijΛ. As this condition was previously imposed by invoking the field

equations for the auxiliary fields, it follows that those field equations must now receive

modifications proportional to the moment maps, as we shall confirm later in this section.

Note that, in (7.2), we refrained from giving the supersymmetry transformation of ẐijΛ,

which is not an independent field.

Another tensor appearing in δΩi
M , a modification of the tensor (2.21), is the super-

covariant field strength Ĝµν
M , which coincides with the field strengths (6.8) up to fermion

bilinears and terms proportional to the tensor field of the Weyl multiplet. These superco-

variant field strengths are defined by,

Ĝ−
µν

Λ = Ĥ−
µν

Λ ,

Ĝ−
µνΛ =FΛΣ Ĥ−

µν
Σ −

1

8
FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (7.5)

where Ĥµν
Λ is the supercovariant extension of (6.7). In view of (2.2), we expect the

following decomposition for Ĥµν
Λ,

Ĥµν
Λ =Hµν

Λ − εijψ̄[µ i(γν]Ωj
Λ + ψν]jX

Λ) − εijψ̄[µ
i(γν]Ω

j Λ + ψν]
jX̄Λ)

−
1

4
(XΛ Tµνij ε

ij + X̄Λ Tµν
ij εij) . (7.6)
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However, in the presence of a gauging, this expression leads to supersymmetry variations

proportional to the gravitini fields induced by the terms in δΩi
Λ of order g. As it turns

out, by suitably adjusting the supersymmetry transformations of the tensor fields, δBµνa

and δBµνm, one can ensure that the Ĥab
Λ will still transform covariantly under Q- and

S-supersymmetry,

δĤab
Λ = − 2 εij ǭ

iγ[aDb]Ω
jΛ − 2g T(NP )

ΛX̄N Ω̄i
P γabǫ

i

− 2ig kAΛ γAiᾱ ζ̄
ᾱγabǫ

i − εij η̄iγabΩj
Λ + h.c. . (7.7)

As a result the combined transformations of the tensor fields, Bµνa and Bµνm, under tensor

and vector gauge transformations and Q- and S-supersymmetry, now read as follows,

ZM,a δBµν a = 2ZM,aD[µΞν]a + 2T(NP )
M
[

W[µ
NδWν]

P − ΛNGµν
P
]

− 2T(NP )
M
[

X̄N Ω̄i
Pγµνǫ

i+XN Ω̄iPγµνǫi+2 X̄NXP
(

ǭiγ[µψν]i+ǭiγ[µψν]
i
)]

,

ZM,m δBµν m = 2ZM,m D[µΞν]m − 2iΩMNkA
N

[

γAiᾱ ζ̄
ᾱγµνǫ

i − γ̄i
Aα ζ̄

αγµνǫi
]

+ 4 iΩMNµjkN εij
[

ψ̄i[µγν]ǫ
k + ψ̄k

[µγν]ǫi
]

. (7.8)

Note that the tensors transform covariantly under diffeomorphisms, and are scale invariant.

As was already alluded to, the moment maps µijM enter the transformation rules of the

vector multiplet fields. In fact, only the magnetic moment maps µij
Λ appear in these

transformation rules.12 For purely electric charges and corresponding moment maps µijΛ,

the supersymmetry transformations (7.1) and (7.2) reduce to the transformations presented

in [6] and [32]. The latter transformations still realize the supersymmetry algebra for the

vector multiplet fields (but not for the hypermultiplet fields) without the need for imposing

equations of motion.

Now that the full supersymmetry transformations have been established, we consider

the superconformal algebra. Its most non-trivial commutation relation is the one of two Q-

supersymmetries. This commutation relation, which was already specified in (2.27), must

now be extended with tensor gauge transformations. Hence

[δ(ǫ1), δ(ǫ2)] = ξµDµ + δM (ε) + δK(ΛK) + δS(η) + δgauge(Λ
M )

+ δtensor(Ξµ a) + δtensor(Ξµ m) , (7.9)

and it should hold modulo field equations and some of the spurious symmetries that we dis-

cussed in the previous section. The various parameters in (7.9) have already been specified

in (2.28), except for the parameters of the tensor gauge transformations, which read,

Ξµ a = − 2 da NP X̄
NXP ξµ ,

Ξµm = − 8 i εijµjkm

(

ǭ2iγµǫ1
k + ǭ2

kγµǫ1i

)

, (7.10)

up to terms that vanish upon contraction with the embedding tensor.13 The combination

ξµDµ denotes an infinitesimal covariant general coordinate transformation, which includes

12The reader may verify that the contribution to Ωi
M proportional to µijΛ vanishes against a similar

contribution contained in Ẑij
M .

13The result for Ξµm given in (7.10) is new compared to previous work. It is determined by verifying the

commutator (7.9) on the vector and tensor gauge fields, as will be discussed in some detail below.
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contributions from all the field-dependent gauge transformations such as a Q- and S-

supersymmetry transformation with parameters −1
2ξ

ρψρ
i and −1

2ξ
ρφρ

i, or vector gauge

transformations with parameters ΛM = −ξρWρ
M , such that the combined result takes a

supercovariant form. For the corresponding field-dependent tensor gauge transformations,

the parameters take a slightly more complicated form [7, 13],

Ξµ a = − ξρ
(

Bρµ a + da NPWρ
NWµ

P
)

,

Ξµm = − ξρBρµ m . (7.11)

In what follows we will verify the validity of (7.9) on the auxiliary fields Yij
Λ, Wµ

M

and the tensor fields Bµνa and Bµνm, as these are most susceptible to the presence of

the new gauge transformations, thereby exhibiting a variety of subtleties that play a role.

Many aspects of this evaluation have their counterpart in a similar evaluation of N = 8

supergravity, which appeared in [13]. At this point we mention two general identities that

are relevant in the present calculations. They follow from (5.9), (5.10) and (5.11),

T(MN)
PXM Ẑij

N =
1

2
T(MN)

P Ω̄i
MΩj

N − 2igT(MN)
PXMΩNQµijQ ,

T(MN)
PXM Ĝ−

µν
N =

1

8
T(MN)

P εij Ω̄i
MγµνΩj

N . (7.12)

Of course, in the calculations we must also take into account that the superconformal gauge

fields, ωµ
ab, fµ

a and φµ
i, depend on the other superconformal fields.

Let us first consider the supersymmetry commutator (7.9) on the auxiliary fields Yij
Λ.

As it turns out, its validity requires to impose the field equations associated with the tensor

fields, which take the following form,

ΘΛa GµνΛ = ΘΛa HµνΛ , ΘΛm GµνΛ = ΘΛm HµνΛ , (7.13)

and the field equations associated with the magnetic gauge fields,

0 =
1

6
e−1εµνρσ

(

ZΛ,aHνρσ a + ZΛ,mHνρσ m

)

+ T(MN)
Λ

(

− 2 X̄M
↔
D µXN

+ Ω̄iMγµΩi
N + X̄M ψ̄ν

iγµγνΩi
N −XM ψ̄νiγ

µγνΩiN −
1

2
e−1εµνρσψ̄νiγρψσ

i X̄MXN

)

+ iGᾱβT
Λβ

γ

(

1

2
Aiᾱ

↔
D

µAi
γ − 2ζ̄ ᾱγµζγ + ψ̄ν

iγµγνζ ᾱAi
γ − ψ̄νiγ

µγνζγAiᾱ

)

− ie−1εµνρσψ̄ν
iγρψσjε

jkµik
Λ , (7.14)

where we made use of the Bianchi identity (6.18).

Secondly we evaluate the supersymmetry commutator on the vector fields Wµ
M ,

[δ(ǫ1), δ(ǫ2)]Wµ
M = ξρGρµ

M + DµΛM − g ZM,a Ξµ a − g ZM,m Ξµ m

−ξρ

(

1

2
εij ψ̄ρ

iγµΩjM + εijX̄
M ψ̄ρ

iψµ
j + h.c.

)

, (7.15)
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where the parameters ξµ, ΛM , Ξµ a and Ξµ m are as in (7.9). In this result one can replace

Gµν
M by Hµν

M . For the electric gauge fields this is trivial as Gµν
Λ and Hµν

Λ are identical.

For the magnetic gauge fields the replacement is effectively allowed because WµΛ appear

in the Lagrangian contracted with the embedding tensor, as can be seen from (6.23).

Therefore, without loss of generality, one can safely contract (7.15) for the magnetic gauge

fields with the embedding tensors, ΘΛa or ΘΛm, upon which one can replace GµνΛ with

HµνΛ by virtue of (7.13). Finally one uses the following equality,

ξρHρµ
M = ξρ∂ρWµ

M + ∂µξ
ρWρ

M −Dµ

(

ξρWρ
M
)

+ gZM,aξρ
(

Bρµ a + da NPWρ
NWµ

P
)

+ gZM,mξρBρµ m . (7.16)

Substituting this identity into (7.15) shows that the ξµ-dependent terms decompose

into a general coordinate transformation with parameter ξµ, a non-abelian gauge trans-

formation with parameter −ξµWµ
M , tensor gauge transformations with parameters

−ξρ
(

Bρµ a + da NPW
N
ρ WP

µ

)

and −ξρBρµ m and a supersymmetry transformation with pa-

rameter −1
2ξ

µψµi. Together they constitute a covariant general coordinate transformation

with parameter ξµ. Consequently the supersymmetry commutator closes according to (7.9).

Subsequently we turn to the supersymmetry commutator on the tensor fields Bµν a.

Here it suffices to consider those fields contracted with ZΛ,a because no other components

of the tensor field appear in the Lagrangian according to (6.16). Hence, we first evaluate

ZΛ,a [δ(ǫ1), δ(ǫ2)]Bµν a

= 2ZΛ,aD[µΞν]a − 2T(MN)
ΛΛMGµν

N

+ 2T(MN)
ΛW[µ

M [δ(ǫ1), δ(ǫ2)]Wν]
N

+ T(MN)
Λξρ

(

X̄M Ω̄i
Nγµνψρ

i − 2ψ̄ρ
iγ[µψν]i X̄

MXN + h.c.
)

+ e εµνρσ T(MN)
Λξρ

(

− 2 X̄M
↔
D σXN + Ω̄iMγσΩi

N

+ X̄M ψ̄λ
iγσγλΩi

N −XM ψ̄λiγ
σγλΩiN −

1

2
e−1εσλτωψ̄λiγτψω

i X̄MXN

)

+ 16 i g T(MN)
ΛΩMP

(

XN µij
P ǭ2iγµνǫ1j − X̄N µijP ǭ

i
2γµνǫ

j
1

)

, (7.17)

with the parameters ξµ, ΛM and Ξµ a as in (7.9). The first four terms can straightforwardly

be compared to the variation of Bµνa given in the first formula of (7.8). However, there is a

subtlety regarding the commutator on Wν
N in the third term, because this supersymmetry

commutator only closes on the gauge fields, up to a term ξρ(G − H)ρν
N . Therefore the

commutator yields the transformations indicated on the right-hand side of (7.9) plus this

extra term.14 Obviously the commutator on Wν
N generates also a diffeomorphism, which

14Upon contraction with ZM a this term vanishes and we have argued that it could therefore be suppressed

in the commutator on the gauge fields on Wν
N . See the text preceding (7.16). However, in the case at

hand the extra term has to be retained.
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will play a role later on in the calculation. Finally the fourth term represents precisely a

supersymmetry transformation with parameter ǫi = −1
2ξ

ρψρ
i.

The remaining terms in (7.17), however, do not seem to have a role to play. At this

point we note that the Lagrangian does not depend separately on ZΛ,aBµν a and ZΛ,mBµν m,

but depends only on the linear combination ZΛ,aBµν a + ZΛ,mBµν m. Consequently, the

algebra is required to close only on this linear combination. Therefore we also evaluate the

commutator on ZΛ,mBµν m,

ZΛ,m [δ(ǫ1), δ(ǫ2)]Bµν m = 2ZΛ,mD[µΞν]m

+ i ξρ
(

kAΛ γAiᾱ ζ̄
ᾱγµνψρ

i − 2 εijµjk
Λψ̄i[µγν]ψρ

k − h.c.
)

− 16 igT(MN)
ΛΩMP

(

XN µij
P ǭ2iγµνǫ1j − X̄N µijP ǭ

i
2γµνǫ

j
1

)

+ ie εµνρσξ
ρ

[

GᾱβT
Λβ

γ

(

1

2
Aiᾱ

↔
D σAi

γ − 2 ζ̄ ᾱγσζγ

+ ψ̄λ
iγσγλζ ᾱAi

γ − ψ̄λiγ
σγλζγAiᾱ

)

− e−1εσλτω ψ̄λ
iγτψωjε

jkµik
Λ

]

, (7.18)

with the parameters ξµ and Ξµ m as in (7.9). The first line establishes closure with respect

to Ξµ m. Furthermore, the next line correctly reproduces a supersymmetry transformation

with parameter ǫi = −1
2ξ

ρψρ
i.

When considering the sum of the two variations (7.17) and (7.18) there are some

cancelations, and on the remaining terms we can impose the field equation (7.14). This

leaves the following terms,

[δ(ǫ1), δ(ǫ2)]
(

ZΛ,aBµν a + ZΛ,mBµν m

)

=ZΛ,a ξρHµνρ a + ZΛ,m ξρHµνρ m

− 2T(MN)
ΛW[µ

M ξρ(G −H)ν]ρ
N + · · · , (7.19)

where the dots refer to terms that have already been accounted for in the context of (7.9).

The explicit terms in (7.19) contribute to the (covariant) general coordinate transformation,

as follows from the following identities, which can be derived straightforwardly from (6.19),

ZΛ,a ξρ Hρµν a =ZΛ,a
(

ξρ∂ρBµν a − 2 ∂[µξ
ρBν]ρ a

)

+ 2ZΛ,aD[µ

(

ξρBν]ρ a − ξρda MNWν]
MWρ

N
)

+ 2T(MN)
ΛξρWρ

MGµν
N

− 2T(MN)
ΛW[µ

M
(

ξρ∂|ρ|Wν]
N + ∂ν]ξ

ρWρ
N − 2 ξρ(G −H)ν]ρ

N
)

− 2 g T(MN)
ΛZM,m ξρWρ

NBµν m ,

ZΛ,m ξρ Hρµν m =ZΛ,m
(

ξρ∂ρBµν m − 2 ∂[µξ
ρBν]ρ m

)

+ 2ZΛ,mD[µ(ξρBν]ρ m)

+ 2 g T(MN)
ΛZM,m ξρWρ

NBµν m . (7.20)
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The first two terms in the equations (7.20) denote the expected general coordinate trans-

formation, and the tensor gauge transformations with parameters given in (7.11). The

third term in the first equations represents the appropriate gauge transformation. The last

terms in the two equations cancel directly, so that the only terms in (7.19) that are still

unaccounted for, are given by

[δ(ǫ1), δ(ǫ2)]
(

ZΛ,aBµν a + ZΛ,mBµν m

)

= − 2T(MN)
ΛW[µ

M
(

ξρ∂|ρ|Wν]
N + ∂ν]ξ

ρWρ
N
)

+ 2T(MN)
ΛW[µ

Mξρ(G −H)ν]ρ
N + · · · . (7.21)

The first of these terms cancels against the general coordinate transformation induced by

the supersymmetry commutator on Wν
N in (7.17), which we already referred to earlier, and

which is not required on the tensor fields in view of the fact that the above equations (7.20)

already account for the general coordinate transformation. The second term can be sup-

pressed by virtue of the special invariance noted in (6.21). To see this, we note that, up to

the first equation of motion (7.13), we can write the induced variation of Bµνa as,

ZΛ,a δBµνa ∝T (Λ
M

Σ) [4 ξρW[µ
M − ξσWσ

M δρ

[µ](G −H)ν]ρΣ

− T [Λ
M

Σ] ξσWσ
M (G −H)µνΣ . (7.22)

This completes our discussion of the supersymmetry algebra.

Finally we summarize the modifications to the Lagrangian that are required by the

general gaugings. As usual these concern both masslike terms for the fermions, which

are proportional to the gauge coupling g, and a scalar potential proportional to g2. The

masslike terms independent of the gravitini follow directly from the rigid theory in the

presence of both electric and magnetic charges [7]. The terms that involve gravitini are

generalizations of the known results for the superconformal theory in the presence of electric

charges [4, 6, 32]. The result includes also a non-fermionic term which describes the

coupling of the auxiliary fields Yij
Λ to the moments µijM ,

e−1Lg = −
1

2
igΩMQTPN

Q εij X̄N Ω̄i
M
(

Ωj
P + γµψµjX

P
)

+ h.c.

+ 2g kAMγ
A
iᾱε

ij ζ̄ ᾱ
(

Ωj
M + γµψµjX

M
)

+ h.c.

+ g µij
M ψ̄µi

(

γµΩj
M + γµνψνjX

M
)

+ h.c.

+ 2g
[

X̄MTM
γ
α Ω̄βγ ζ̄

αζβ +XMTM
γ̄

ᾱ Ωβ̄γ̄ ζ̄
ᾱζ β̄
]

−
1

4
g
[

FΛΣΓ µ
ijΛ Ω̄i

ΣΩj
Γ + F̄ΛΣΓ µij

Λ Ω̄iΣΩjΓ
]

+ g Y ijΛ

[

µijΛ +
1

2
(FΛΣ + F̄ΛΣ)µij

Σ

]

. (7.23)

Upon solving the auxiliary fields Yij
I one obtains an additional contribution to the scalar

potential of order g2. Without this contribution the scalar potential reads,

e−1Lg2 = ig2 ΩMN TPQ
MXP X̄Q TRS

NX̄RXS

− 2g2kA
M kB

N gAB X
MX̄N −

1

2
g2 NΛΣ µij

Λ µijΣ . (7.24)
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Upon eliminating the auxiliary fields, the last term in this expression changes into

−
1

2
g2 NΛΣ µij

Λ µijΣ −→ −2 g2
[

µij
Λ + FΛΓ µ

ijΓ
]

NΛΣ
[

µijΣ + F̄ΣΞ µij
Ξ
]

. (7.25)

The above expressions are not of definite sign. From the Lagrangians in section 4

one can deduce that χvector, χhyper and the metrics that appear in the kinetic terms of

the physical scalar fields should be negative. The latter metrics are proportional to two

matrices, MΛΣ and GAB , that should therefore be negative definite. They are defined by

MΛΣ̄ =χ−2
vector (NΛΣNΓΞ −NΛΓNΣΞ) X̄ΓXΞ ,

GAB =χ−1
hyper

(

gAB − χ−1
hyper

(

1

2
χAχB + kAijkB

ij

))

. (7.26)

With these observations we can separate the terms in the potential in positive and nega-

tive ones,

e−1Lg2 = − g2 χvectorMΛ̄Σ (TPQ
ΛXP X̄Q) (TRS

ΣX̄RXS)

− 4 g2χvector k
A

M kB
N GAB X

M X̄N

− 2 g2 χvector MΛ̄ΣN
ΛΓ
[

µij
Γ + FΓΩ µ

ijΩ
]

NΣΞ
[

µijΞ + F̄Ξ∆ µij
∆
]

− 6 g2χ−1
vectorX

M X̄N µijM µij
N , (7.27)

where we used that χhyper = 2χvector, as is implied by the field equation associated with

the field D. It then follows that all contributions to Lg2 are negative, with the exception

of the last term which is positive. This decomposition generalizes a similar decomposition

known for purely electric charges.

8 Summary and some applications

In this paper we presented Lagrangians and supersymmetry transformations for general

superconformal systems of vector multiplets and hypermultiplets in the presence of both

electric and magnetic charges. The results were verified to all orders and are consistent

with results known in the literature based on both rigidly supersymmetric theories and on

superconformal systems without magnetic charges. In the presence of magnetic charges

the off-shell closure of the superconformal algebra is only realized on the Weyl multiplet.

The results of this paper establish a general framework for studying gauge interactions in

matter-coupled N = 2 supergravity.

In the remainder of this last section we discuss two specific applications to demon-

strate the consequences of this general framework. The first one discusses full and partial

supersymmetric solutions in maximally symmetric space-times, and the second one deals

with full or partial supersymmetric solutions in AdS2 × S2 space-times.

8.1 Maximally symmetric space-times and supersymmetry

In this application we briefly consider the question of full or partial supersymmetry in a

maximally symmetric space-time. Hence one evaluates the supersymmetry variations of the
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fermion fields in the maximally symmetric background, where only gµν , Ai
α, XΛ and Yij

Λ

can take non-zero values, taking into account that the fermion fields transform under both

Q- and S-supersymmetry. In this particular background, it turns out that the gravitino field

strength, R(Q)µν
i (and the related spinor χi) is S-invariant. Since its Q-supersymmetry

variation is proportional to the field D, it immediately follows that D = 0, so that the

special conformal gauge field takes the value (we assume the gauge choice bµ = 0, which

leaves a residual invariance under constant scale transformations),

fµ
a =

1

2
R(e, ω)µ

a −
1

12
eµ

aR(e, ω) , (8.1)

where R(e, ω)µν
ab denotes the space-time curvature.

In what follows it thus suffices to concentrate on the fermions belonging to the vector

multiplets and the hypermultiplets. We first present their variations in the background,

which follow directly from (7.1) and (7.2),

δζα = 2gXM TM
α

βAi
β εijǫj +Ai

α ηi ,

δΩi
M = Ẑij

M ǫj − 2g TPN
MX̄PXNεijǫ

j + 2 igΩMNµijNǫ
j + 2XMηi . (8.2)

Substituting the equations of motion for the auxiliary fields Yij
Λ, the variation of the

independent fermion fields δΩi
Λ takes the following form,

δΩi
Λ = −2g TNP

Λ X̄NXP εij ǫ
j − 4 gNΛΣ

(

µijΣ + F̄ΣΓ µij
Γ
)

ǫj + 2XΛηi , (8.3)

Following the strategy adopted by [42], we consider only combinations of fermion fields

that are invariant under S-supersymmetry. To construct S-invariant combinations of these

fermions, it is convenient to define the following two spinor fields,

ζH
i =χ−1

hyperΩ̄αβAi
α ζβ

ΩV
i = −

1

2
iχ−1

vectorΩMNX̄
MΩi

N =
1

2
χ−1

vector X̄
ΛNΛΣΩi

Σ , (8.4)

which are both formally invariant under duality when treating the embedding tensor as

a spurion. Under supersymmetry these two spinors transform equivalently in this back-

ground, provided we also use the field equation of the fieldD, which yields χhyper = 2χvector.

Indeed one easily derives,

δΩV
i = Aij ǫ

j + ηi = −εij δζ
H j , (8.5)

where the symmetric matrix Aij is given by,

Aij = −2 g χ−1
vector X̄

MµijM . (8.6)

Here we made use of equations (5.11).

To make contact with the terms appearing in the potential (7.27), we consider the

variations of three other spinors, which are S-supersymmetry invariant and consistent with

duality. As it turns out, considering such variations gives important information regarding
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the possible supersymmetric realizations, although it will not yet fully determine whether

the corresponding solutions will actually be realized. The first two variations are,

g
(

µij
Λ + FΛΣ µ

ijΣ
)

δ[Ωj
Λ − 2XΛΩV

j ] = − 2 g2 X̄MXNTMN
Pµij

P εjk ǫ
k

− 2 g2(µkl
Λ + FΛΣ µ

klΣ)NΛΓ(µklΓ + F̄ΓΞ µkl
Ξ)ǫi

+ χvector A
ijAjkǫ

k ,

gNΛΣ TMN
ΣXM X̄N δ[Ωi

Λ − 2XΛΩV
i ] = 2i g2ΩMN(TPQ

MXP X̄Q) (TRS
NX̄RXS) εijǫ

j

− 4 g2 XMX̄NTMN
PµijP ǫ

j . (8.7)

In deriving this result we made use of identities such as (5.9) and (5.11). Furthermore we

used ΩMNµijM µklN = µijΛ µkl
Λ − µij

Λ µklΛ = 0, which follows directly from (5.20). The

third spinor variation is based on hypermultiplets,

g X̄MTM
α

βAi
β Ω̄αγ δ

[

ζγ + εjkAj
γ ζH

k

]

= − g2X̄MXN kA
M kB

N gAB ǫi

− 2 g2X̄MXN TMN
P µijP ε

jk ǫk

+ χvector AijA
jk ǫk . (8.8)

Here we made use of the identity,

TM
α

βAi
β Ω̄αγ TN

γ
δAj

δ =
1

2
εij k

A
M kAN + TMN

P µijP , (8.9)

which follows from (3.16), (3.27), (3.32) and (5.17). Combining (8.8) with the two previous

identities gives,
[

e−1Lg2 δi
j + 3χvectorA

ikAkj

]

ǫj = 0 . (8.10)

This relation requires e−1Lg2 to be non-negative, confirming the known result that de Sitter

space-times cannot be supersymmetric.

According to [42] one must also consider the symmetry variation of the supercovariant

derivative of at least one of these spinor fields. Let us, for instance, consider DµΩV
i ,

which transforms also under S-supersymmetry. The following combination is then again

S-invariant, and changes under Q-symmetry according to,

δ

[

DµΩV
i −

1

2
AijγµΩV j

]

= fµ
aγaǫi −

1

2
AijA

jk γµǫk . (8.11)

Therefore we must require that the supersymmetry parameters are subject to the eigenvalue

condition,
[

δi
j

(

R(e, ω)µ
a −

1

6
eµ

aR(e, ω)
)

− eµ
aAikAkj

]

ǫj = 0 . (8.12)

Combining this result with (8.10) reproduces the Einstein equation for the maximally

symmetric space-time, irrespective of whether supersymmetry is realized fully or partially.

Observe that full supersymmetry requires that AikAkj ∝ δi
j .

The result (8.10) can also be written as

[

AikAkj −
1

2
AklAkl δ

i
j

]

ǫj = −
e−1L−

g2

3χvector
ǫi , (8.13)
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where L−
g2 pertains to the negative terms in Lg2. For full supersymmetry we thus find that

L−
g2 must vanish, while partial supersymmetry is associated with the smallest eigenvalue of

AikAkj and L−
g2 6= 0. We refrain from giving more explicit details here, but we briefly con-

sider the special case of Minkowski space-time. For partial supersymmetry, the unbroken

supersymmetry parameter is subject to the condition Aijǫ
j = 0. In this context one can

consider the variation of yet another spinor, which is invariant under S-supersymmetry,

but no longer under duality,

XΛNΛΣ δ[Ωi
Σ − 2XΣ ΩV

i ] = − 2 gXΛNΛΣ

[

TMN
Σ X̄MXN εij − 2iµij

Σ
]

ǫj

+ 2XΛNΛΣ

[

X̄Σ εikεjlA
kl −XΣAij

]

ǫj . (8.14)

In the absence of magnetic charges, the first term on the right-hand side vanishes because

TMN
ΣX̄MXN can be replaced by T(MN)

ΣX̄MXN by virtue of the third equation of (5.11),

which vanishes without magnetic charges, and so does the moment map µij
Σ. Therefore

both Aijǫ
j and Aijεjkǫ

k vanish, which implies that Aij vanishes so that supersymmetry

must be fully realized. This is in accord with a known theorem according to which N = 2

supersymmetry can only be broken to N = 1 supersymmetry in Minkowski space in the

presence of magnetic charges [18, 20–24]. For the abelian gaugings the situation simpli-

fies, and one can show that Minkowski solutions with residual N = 1 supersymmetry are

possible provided that,

X̄M TM
α

β Ai
βǫi = 0 ,

(µijΛ + F̄ΛΣ µij
Σ) ǫj = 0 , (8.15)

with the two terms of the abelian potential vanishing separately (this follows from the first

equation of (8.7) and from (8.8)),

X̄MXN kA
M kB

N gAB =0 ,

(µkl
Λ + FΛΣ µ

klΣ)NΛΓ(µklΓ + F̄ΓΞ µkl
Ξ) =0 . (8.16)

Without magnetic charges, one can easily verify that residual N = 1 supersymmetric

solutions are not possible.

Apart from this latter result, the above analysis only indicates which supersymmetric

solutions can, in principle, exist. To confirm that they are actually realized, one has to

also examine the supersymmetry variations of the remaining fermion fields. This can be

done, but we prefer not to demonstrate this here. Instead we will discuss this explicitly in

the application presented in the next subsection, which is less straightforward, and where

we will follow the same set-up as in this subsection.

8.2 Supersymmetry in AdS2 × S
2

In this second application we consider an AdS2 × S2 space-time background and analyze

possible supersymmetric solutions. Hence the space-time metric can be chosen equal to,

ds2 = gµνdxµdxν = v1

(

− r2 dt2 +
dr2

r2

)

+ v2

(

dθ2 + sin2 θ dϕ2
)

, (8.17)

– 38 –



J
H
E
P
1
0
(
2
0
1
1
)
0
5
0

whose non-vanishing Riemann curvature components are equal to

Rab
cd = 2 v−1

1 δab
cd , R

âb̂
ĉd̂ = −2 v−1

2 δ
âb̂

ĉd̂ , (8.18)

so that the four-dimensional Ricci scalar equals R = 2(v−1
1 − v−1

2 ). Observe that we used

tangent-space indices above, where a, b, . . . label the flat AdS2 indices (0, 1) associated

with (t, r), and â, b̂, . . . label the flat S2 indices (2, 3) associated with (θ, ϕ). Furthermore

the non-vanishing components of the auxiliary tensor field are parametrized by a complex

scalar w,

− T01
ijεij = −iT23

ijεij = w . (8.19)

Using the previous results one finds the following expressions for the bosonic part of the

special conformal gauge field fa
b,

fa
b =

(

1

6
(2 v−1

1 + v−1
2 ) −

1

4
D −

1

32
|w|2

)

δa
b +

1

2
R(A)23 εa

b ,

fâ
b̂ =

(

−
1

6
(v−1

1 + 2 v−1
2 ) −

1

4
D +

1

32
|w|2

)

δâ
b̂ +

1

2
R(A)01 εâ

b̂ , (8.20)

where the two-dimensional Levi-Civita symbols are normalized by ε01 = ε23 = 1. The

non-zero components of the modified curvature R(M)ab
cd are given by,

R(M)ab
cd =

(

D +
1

3
R

)

δab
cd ,

R(M)
âb̂

ĉd̂ =

(

D +
1

3
R

)

δ
âb̂

ĉd̂ ,

R(M)
ab̂

cd̂ =
1

2

(

D −
1

6
R

)

δa
c δ

b̂
d̂ −

1

2
R(A)23 εa

c δ
b̂
d̂ −

1

2
R(A)01 δa

c ε
b̂
d̂ . (8.21)

We refer to the appendices presented in [29] for the general definitions of these quantities,

which appear in the superconformal transformation rules of the Weyl multiplet fields and

are therefore needed below.

Motivated by the maximal symmetry of the two two-dimensional subspaces, we expect

the various fields to be invariant under the same symmetry. Therefore we will assume that

the scalars XM and Ai
α are covariantly constant (for other fields the covariant constancy

will be discussed in due course). The corresponding integrability condition then requires

that the U(1) and SU(2) R-symmetry curvatures are not necessarily vanishing, and are

related to the curvatures of the vector multiplet gauge fields. This result is consistent

with the field equations for the R-symmetry gauge fields, Aµ and Vµ
i
j, which lead to the

expressions (we again choose the gauge bµ = 0),

R(A)µν = g χ−1
vectorHµν

MTMQ
NΩPNX̄

QXP ,

R(V)µν
i
j = − 4gχ−1

hyperHµν
Mµik

M εkj . (8.22)

Observe that the above equations only contribute for µ, ν = t, r, or µ, ν = θ, ϕ, in view

of the space-time symmetry. We can rewrite these equations in a different form, which is
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convenient later on,

R(A)−µν = g χ−1
vectorĤ

−
µν

Λ
[

TΛQ
N + FΛΣ T

Σ
Q

N
]

ΩPNX̄
QXP ,

R(V)−µν
i
j = − 4gχ−1

hyperĤ
−
µν

Λ
[

µik
Λ + FΛΣ µ

ikΣ
]

εkj +
1

4
εikAkj Tµν

mnεmn , (8.23)

where we suppressed all the fermionic terms which vanish in the background and made use

of the field equations (7.13) of the tensor fields Bµν a and Bµν m, and of (5.11).

To study supersymmetry in this background, we present the non-vanishing terms in

the supersymmetry transformations of the spinors Ωi
Λ and ζα,

δΩi
Λ =

1

2
γµνĤ−

µν
Λ εijǫ

j − 2g TNP
Λ X̄NXP εij ǫ

j − 4 gNΛΣ
(

µijΣ + F̄ΣΓ µij
Γ
)

ǫj + 2XΛηi ,

δζα = 2gXM TM
α

βAi
β εijǫj +Ai

α ηi . (8.24)

Note that δΩi
Λ has changed as compared to (8.3) by the presence of the field strength (7.6)

(suppressing the fermionic terms, so that Ĥ−
µν

Λ = H−
µν

Λ − 1
4X̄

ΛTµν
ijεij), while the expres-

sion for δζα is identical to the one given in (8.2). Just as before, we make use of the two

spinors ΩV
i and ζH

i defined in (8.4). The supersymmetry variation of these fields in the

given background are,

δΩV
i =

1

4
χ−1

vector X̄
ΛNΛΣĤ

−
µνγ

µνεijǫ
j +Aijǫ

j + ηi ,

δζH
i = εij

(

Ajkǫk + ηj
)

, (8.25)

where Aij was defined in (8.6). Supersymmetry therefore implies that the terms propor-

tional to γµν must vanish. As it turns out, this condition is just the field equation for Tab
ij ,

X̄ΛNΛΣ Ĥ−Σ
ab = 0 . (8.26)

Two additional fermionic variations are,

δ

[

R(Q)ab
i −

1

8
Tcd

ijγcdγabΩ
V
j

]

=R(V)−ab
i
jǫ

j −
1

2
R(M)ab

cdγcdǫ
i −

1

8
Tcd

ij γcdγabAjk ǫ
k ,

δ

[

DaΩ
V
i −

1

2
AijγaΩ

V j

]

= fa
bγbǫi +

1

4
iR(A)−cdγ

cdγaǫi −
1

8
R(V)−bci

jγbcγaǫj

+
1

16
AijTbc

jkγbcγaǫk −
1

2
AijA

jk γa ǫk , (8.27)

where we refer again to the appendices presented in [29] for more details. Observe that

we have assumed, motivated by the maximal symmetry of the two-dimensional subspaces,

that also Tab
ij and Aij are covariantly constant.
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The consequences of (8.27) can be expressed as follows,15

(

D +
1

12
R

)

ǫi +
[

R(V)−23
i
j − iR(A)−23 δ

i
j

]

γ23 ǫj = 0 ,

(

D −
1

6
R

)

ǫi −

[

2iR(A)−23 δ
i
j +

1

2
iw εikAkj

]

γ23 ǫj = 0 ,

[

AikAkjǫ
j +

1

4
iw εikAkj γ

23

]

ǫj = 0 ,

(

v−1
1 + v−1

2 −
1

8
|w|2

)

ǫi −

[

1

2
iw̄Aikεkj + 2R(V)+23

i
j + 2iR(A)+23 δ

i
j

]

γ23ǫj = 0 . (8.29)

Furthermore we note that the covariant constancy of Tab
ij and Aij implies the conditions,

wR(A)µν = 0 , R(V)µν
k
(iAj)k = −iR(A)µν Aij . (8.30)

An important observation is that both iR(V)µν
i
j (for any µ, ν) and εikAkj are 2×2 matrices

that take their value in the Lie algebra of SU(2). However, while the matrices iR(V)µν
i
j are

necessarily hermitian, this is not the case with εikAkj, which is in general complex-valued.

We now turn to possible supersymmetric solutions for this background. We proceed

in two steps. First we analyze the conditions for supersymmetry, ignoring the transforma-

tions (8.25). This will reveal the possible existence of three distinct classes of supersym-

metric solutions, with four or eight supersymmetries, depending on the values of R(V)µν
i
j

and Aij. The corresponding information is summarized in table 3. As a last step we then

analyze the transformations (8.25), which lead to additional constraints. It then follows

that one of the classes listed in table 3 is actually not realized. In what follows we will

decompose the equations (8.29) in eigenstates of iγ23, denoted by ǫi± = 1
2(1 ± iγ23)ǫi. Ob-

serve that these spinors transform as a product representation of the SU(2) isometry group

associated with S2 and the SU(2) R-symmetry. This observation will be relevant shortly.

Note also that the spinors transform according to ǫ±
i → ǫi∓ under charge conjugation.

We start by noting that w = 0 will only lead to a supersymmetric solution provided

v−1
1 = 0. Discarding this singular solution, we thus assume R(A)µν = 0. Then we consider

two classes of solutions, denoted by A and B in table 3, depending on whether D − 1
6R

vanishes or not.

For R(A)µν = 0 and D − 1
6R = 0, the equations (8.29) imply,

wAij ǫ
j
± = 0 ,

iR(V)−23
i
j ǫ

j
± = ±

1

4
R ǫi± ,

[

iR(V)+23
i
j −

1

4
w̄Aikεkj

]

ǫj± = ∓
1

2

(

v−1
1 + v−2

2 −
1

8
|w|2

)

ǫi± . (8.31)

15There are also charge conjugated equations. For instance, the first equation reads,

(D +
1

12
R)ǫi +

ˆ

R(V)+23i
j + iR(A)+23 δi

j
˜

γ
23

ǫj = 0 . (8.28)

– 41 –



J
H
E
P
1
0
(
2
0
1
1
)
0
5
0

Let us now assume that Aij 6= 0. In that case εikAkj must have a single null vector in order

that a supersymmetric solution exists. On the other hand, it must commute with the SU(2)

curvatures, which in this case implies that the R(V)µν
i
j must vanish. Supersymmetry then

requires that v1 = v2 and

wAij ǫ
j
± = 0 , w̄Aikεkj ǫ

j
± = ±

(

4 v−1
1 −

1

4
|w|2

)

ǫi± . (8.32)

These equations have no solution unless Aij = 0. When Aij = 0 and the SU(2) curvatures

are non-vanishing, one can show that (8.31) implies,

iR(V)23
i
j ǫ

j
± = ±

1

2
R ǫi± , v−1

1 =
1

16
|w|2 . (8.33)

This solution, denoted by A[2], has generically four supersymmetries, two associated with

two of the spinor parameters ǫi±, and two related with the charge-conjugated spinors ǫi∓.

The two spinors of the ǫi± must be eigenspinors of both iγ23 and iR(V)23
i
j with related

eigenvalues. Therefore the supersymmetries of class A[2] (and also of class B, as we shall

see later) cannot transform consistently under the SU(2) isometry group. We will return

to this aspect shortly.

In the special case where both Aij and the SU(2) curvatures vanish, we have v−1
1 =

v−1
2 = 1

16 |w|
2. Generically we then have eight supersymmetries. This class is denoted by

A[1]. Here the supersymmetries act consistently under the action of both SU(2) groups.

This completes the discussion of the type-A solutions.

Subsequently we turn to the solutions of class B, where D− 1
6R 6= 0 and R(A)µν = 0.

This class is denoted by B. In that case the first two equations (8.29) imply,

iR(V)−23
i
jǫ

j
± = ±

(

D +
1

12
R

)

ǫi± ,

1

2
w εikAkj ǫ

j
± = ±

(

D −
1

6
R

)

ǫi± . (8.34)

With this result, the last two equations then yield the eigenvalue equations,

iR(V)+23
i
jǫ

j
± = ∓

1

2

(

v−1
1 + v−1

2 −
1

4
|w|2

)

ǫi± ,

1

2
w̄ Aikεkj ǫ

j
± = ±

1

8
|w|2 ǫi± . (8.35)

Combining these equations leads to,

w̄ Aij = − w εik εjlAkl ,

R(V)−23
i
j =R(V)+23

i
j =

1

2
R(V)23

i
j = −

2i

v2 w̄
εik Akj ,

iR(V)23
i
jǫ

j
± = ∓ v−1

2 ǫi± ,

D = −
1

6

(

v−1
1 + 2v−1

2

)

,

v−1
1 =

1

4
|w|2 . (8.36)
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class R(V) Aij v1, v2 susy

A[1] R(V) = 0 Aij = 0 v−1
1 = v−1

2 = 1
16 |w|

2 4 + 4̄

A[2] R(V)23 = O(v−1
1 − v−1

2 ) Aij = 0 v−1
1 = 1

16 |w|
2 6= v−1

2 2 + 2̄

B R(V)23
i
j = − 4i

v2 w̄
εikAkj = O(v−1

2 ) v−1
1 = 1

4 |w|
2 2 + 2̄

Table 3. Three classes of supersymmetric solutions. As shown in due course, only the classes A[1]

and B are actually realized.

Just as in class A[2], these solution have generically four supersymmetries, which cannot

transform consistently under the action of the SU(2) isometry group. Furthermore, note

that the solutions become singular in the limit where Vµν
i
j and Aij vanish, so that this

class is really distinct from the type-A class.

In view of the fact that the supersymmetry spinors do not always seem to transform

consistently under the action of the SU(2) transformations associated with the S2 isome-

tries, let us now first clarify this issue and turn to a discussion of the Killing spinor equations

(in gauge bµ = 0) for each of the three classes. These equations take the following form,

δ
(

ψµ
i + γµ ΩVi

)

= 2
◦
∇µǫ

i + iAµ ǫ
i + Vµ

i
j ǫ

j − εik
[

1

4
iw γ23δk

j + εklA
lj

]

γµ ǫj . (8.37)

where
◦
∇µ denotes the AdS2 × S2 covariant derivative. Obviously we may set Aµ and

Va = 0.

For class-A solutions (8.37) leads to,

◦
∇aǫ

i
± ∓

1

8
w εijγa ǫj± = 0 ,

◦
∇âǫ

i
± +

1

2
Vâ

i
j ǫ

j
± ∓

1

8
w εijγâ ǫj∓ = 0 , (8.38)

where v−1
1 = 1

16 |w|
2. For the solution of class A[1], we may take Vâ

i
j = 0, so that we obtain

the standard Killing spinor equations for AdS2 × S2. For the A[2] solutions, the Killing

spinor equation on S2 is somewhat unusual, because of the presence of the R-symmetry

connection whose strength is not related to the size of the S2. Since we will show later that

the type-A[2] solutions are in fact not realized, we refrain from further discussion concerning

these solutions.

Hence we proceed to the class-B solutions. In this case, the Killing spinor equa-

tion (8.37) decomposes into,

◦
∇aǫ

i
± ∓

1

4
w εijγa ǫj± = 0 ,

◦
∇âǫ

i
± +

1

2
Vâ

i
j ǫ

j
± = 0 . (8.39)

Because v−1
1 = 1

4 |w|
2, the first equation is the standard AdS2 Killing spinor equation.

However, the second equation does not coincide with the standard Killing spinor equation
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on S2. We note that the strength of the R-symmetry connection is proportional to v−1
2 ,

and is therefore also determined by the S2 radius. To elucidate the situation, let us briefly

discuss the relevant equations for the unit sphere (v2 = 1).

We use the standard coordinates θ and ϕ on S2, with zweibeine e2 = dθ and e3 =

sin θ dϕ, and gamma matrices γ2 and γ3 that satisfy the standard Clifford algebra relation

with positive signature. The spin connection field in our convention equals ω = ω23 =

−ω32 = cos θ dϕ. Consequently we have that
◦
∇θ = ∂θ and

◦
∇ϕ =

(

∂ϕ − 1
2 cos θ γ23

)

. Now

we adopt an R-symmetry transformation to bring R(V)23
i
j in diagonal form. In that case

we can assume V i
j = −iλ (σ3)

i
j cos θ dϕ with λ some real constant and σ3 the diagonal

Pauli matrix. This leads to the corresponding field strength R(V)23
i
j = iλ (σ3)

i
j. From

the third equation of (8.36) we conclude that |λ| = 1 and by an additional R-symmetry

transformation we can ensure that λ = 1. In that case (remember that we put v2 = 1) the

supersymmetries are parametrized by the parameters ǫ1+ and ǫ2−. It is now straightforward

to verify that these spinors do not depend on the S2 coordinates as a result of the second

equation (8.39).

Consequently the supersymmetries do not transform under the isometries of S2, which

implies that they carry no spin! Along the same lines one expects that also the fields in this

background will change their spin assignment. The reason that the spin assignments change

in this background, is that the spin rotations associated with the isometries of S2 become

entangled with R-symmetry transformations, in a similar way as in magnetic monopole so-

lutions, where the rotational symmetry becomes entangled with gauge transformations [26].

In the superconformal context, where one has R-symmetry connections (which in this so-

lution live on S2), the geometric origin of the entanglement is clear. While such conditions

on the supersymmetry spinor have been obtained previously in the literature for a vari-

ety of four- and five-dimensional supersymmetric solutions (see, e.g. [27, 28, 43–45], this

phenomenon seems not to have received special attention.

Finally we must investigate the remaining variations based on (8.24). Consider first

the variation for the fields Ωi
Λ, which we parametrize as δΩi

Λ = Aij
Λǫj − 2XΛηi, so that

Aij
Λ = 2 Ĥ−

23
Λεijγ

23 − 2g TNP
Λ X̄NXP εij − 4 gNΛΣ

(

µijΣ + F̄ΣΓ µij
Γ
)

. (8.40)

Then we consider the variation of two S-invariant combinations, Ωi
Λ − 2XΛΩV

i , and

Da(Ω
i Λ−2X̄ΛΩiV)− 1

2 (AijΛ−2 X̄ΛAij)γaΩ
V
j , whose vanishing under supersymmetry imply

the following identities,

[

Aij
Λ − 2XΛAij

]

ǫj = 0 ,
(

AikΛ − 2 X̄ΛAik
) (

Akj −
1

8
Tbckj γ

bc

)

γaǫ
j = 0 , (8.41)

where we assumed that DµA
Λ = 0 in line with our earlier ansätze. Likewise we obtain two

equations for the hypermultiplets,

[

2 gX̄M T̄M
ᾱ

β̄ A
iβ̄ εij −AiᾱAij

]

ǫj = 0 ,

(

2 gXMTM
α

β Ai
β εik −Ai

αAik
)

(

Akj −
1

8
Tbckj γ

bc

)

γaǫ
j = 0 . (8.42)
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We note the presence of a universal factor on the right-hand side of the equation in (8.41)

and (8.42), which is proportional to

Akj −
1

8
Tbckj γ

bc = −εkl

(

εlmAmj −
1

4
iw̄ γ23 δl

j

)

, (8.43)

which is the hermitian conjugate of the term that appears at the right-hand side of (8.37).

The equations (8.41) and (8.42) lead to the following six conditions,

[

g TNP
Λ X̄NXP δi

j−2 gNΛΣ εik
(

µkjΣ+F̄ΣΓ µkj
Γ
)

−XΛ εikAkj

]

ǫj± = ∓ iĤ−
23

Λ ǫi± ,

[

g TNP
ΛXNX̄P εik + 2 gNΛΣ

(

µik
Σ + FΣΓ µ

ikΓ
)

+ X̄ΛAik
]

Akj ǫ
j
± =

1

4
iw̄ Ĥ+

23
Λ ǫi± ,

w̄
[

g TNP
ΛXN X̄P δi

j−2 gNΛΣεik
(

µkjΣ+FΣΓ µkj
Γ
)

−X̄ΛAikεkj

]

ǫj± = 4i Ĥ+
23

Λ εikAkj ǫ
j
± ,

[

2 gX̄M T̄M
ᾱ

β̄ A
iβ̄ εij −AiᾱAij

]

ǫj± = 0 ,

[

2 gXMTM
α

β Ai
β εik −Ai

αAik
]

Akj ǫ
j
± = 0 ,

[

2 gXMTM
α

β Ai
β εik −Ai

αAik
]

εkj ǫ
j
± = 0 . (8.44)

Let us now consider the various classes of solutions shown in table 3. First of all the

solutions of type A, characterized by Aij = 0. From the second equation of (8.44) it then

follows that Ĥµν
Λ = 0. Combining this result with the equations (8.23) shows that both

R(A)µν and R(V)µν
i
j must vanish. This implies that solution A[2] is not realized. Hence we

are left with the fully supersymmetric solution A[1]. Therefore we proceed by determining

the additional restrictions for this solution.

The first, third, fourth and sixth equations of (8.44) can be written as follows,

iεikµkj
Λ ǫj± = −

1

2
TNP

Λ(X̄NXP −XN X̄P ) ǫi± ,

iNΛΣεik
(

2µkjΣ + (FΣΓ + F̄ΣΓ)µkj
Γ
)

ǫj± =
1

2
iTNP

Λ(X̄NXP +XNX̄P ) ǫi± ,

X̄M T̄M
ᾱ

β̄ A
iβ̄ εij ǫ

j
± = 0 ,

XMTM
α

β Ai
β ǫi± = 0 . (8.45)

Since a hermitian matrix must have real eigenvalues, it follows that both sides of the first

two equations should vanish. Also the factors in the last two equations should vanish,

so that

µijΛ = µij
Λ = 0 ,

TNP
ΛXN X̄P = 0 ,

XMTM
α

β Ai
β = 0 = X̄MTM

α
β Ai

β . (8.46)

Note that Lg2 is now vanishing. For electric charges these solutions have already been iden-

tified in [25]. Without charges this is the well-known solution that arises as a near-horizon
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geometry of BPS black holes. The fact that the moment maps and certain combinations

of Killing vectors are vanishing does not warrant the conclusion that there is no gauging.

One can only conclude that the field equations require some of these quantities to vanish

for these solutions.

Now consider the type-B solution where Aij is non-vanishing. In that case the first

three equations of (8.44) lead to two independent equations,

[

g TNP
Λ X̄NXP δi

j − 2 gNΛΣ εik
(

µkjΣ + F̄ΣΓ µkj
Γ
)]

ǫj± = ∓

(

iĤ−
23

Λ +
1

4
w̄XΛ

)

ǫi± ,

[

g TNP
ΛXN X̄P δi

j − 2 gNΛΣεik
(

µkjΣ + FΣΓ µkj
Γ
)]

ǫj± = ∓

(

i Ĥ+
23

Λ −
1

4
wX̄Λ

)

ǫi± .

(8.47)

These equations can be analyzed in a similar way as the corresponding equations in (8.45).

The results are as follows,

TNP
ΛX̄NXP = 0 ,

gεikµkj
Λ ǫj± = ∓

1

2

[(

Ĥ−Λ
23 −

1

4
iw̄XΛ

)

−

(

Ĥ+Λ
23 +

1

4
iwX̄Λ

)]

ǫi± ,

gεikµkjΛ ǫ
j
± = ±

1

2

[

FΛΣ

(

Ĥ−Σ
23 −

1

4
iw̄XΣ

)

− F̄ΛΣ

(

Ĥ+Σ
23 +

1

4
iwX̄Σ

)]

ǫi± . (8.48)

From (5.9), it follows that the first constraint of (8.48) can be generalized to

TMN
P X̄MXN = 0. Using also the representation constraint (5.6), one reconfirms that

R(A)µν , as given in (8.23), vanishes. The same argument applies to solutions of type A[1].

Furthermore, as a check one may also reconstruct the eigenvalue equation for Aij which

shows once more that (8.26) must be valid.

One can use the same strategy and determine R(V)23
i
j from (8.23), making use

of (8.48) with TMN
P X̄MXN = 0. Evaluating this curvature on the supersymmetry pa-

rameters, making use of the eigenvalue condition for this curvature presented in (8.36) as

well as of (8.26), it follows that

v−1
2 = −2χ−1

vectorNΛΣĤ
−Λ
23 Ĥ+Σ

23 −
1

8
|w|2 . (8.49)

In the first expression on the right-hand side, one can verify, replacing NΛΣ by the negative

definite metricMΛΣ̄ defined in (7.26) and using (8.26), that this expression must be positive,

which yields an upper bound on |w|2 for given field strengths Ĥ23
Λ.

The last three equations of (8.44) lead to two equations,

XM
[

TM
α

βAi
β + χ−1

vectorεij µ
jk

M Ak
α
]

= 0 ,

X̄M
[

TM
α

βAi
β + χ−1

vectorεij µ
jk

M Ak
α
]

= 0 (8.50)

From these equations, one derives, upon using (8.9),

g2X̄MXN kA
M kAN =

1

16
χvector |w|

2 . (8.51)
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The scalar potential in the type-B solutions thus takes the form,

e−1Lg2 = − 2 g2 χvector MΛ̄ΣN
ΛΓ
[

µij
Γ + FΓΩ µ

ijΩ
]

NΣΞ
[

µijΞ + F̄Ξ∆ µij
∆
]

−
3

16
χvector |w|

2 , (8.52)

where the first term is negative and the second one positive. We refrain from giving

further results.

For a single (compensating) hypermultiplet, which can only have abelian gaugings, we

expect that one of these type-B solutions describes the near-horizon geometry of the spher-

ically symmetric static black hole solution presented in [27, 28]. The result of this paper

then ensures that this black hole solution has supersymmetry enhancement at the horizon.
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