10,594 research outputs found

    A robust self-organized public key management for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-organized wireless network where mobile nodes can communicate with each other without the use of any existing network infrastructure or centralized administration. Trust establishment and management are essential for any security framework of MANETs. However, traditional solutions to key management through accessing trusted authorities or centralized servers are infeasible for MANETs due to the absence of infrastructure, frequent mobility, and wireless link instability. In this paper, we propose a robust self-organized, public key management for MANETs. The proposed scheme relies on establishing a small number of trust relations between neighboring nodes during the network initialization phase. Experiences gained as a result of successful communications and node mobility through the network enhance the formation of a web of trust between mobile nodes. The proposed scheme allows each user to create its public key and the corresponding private key, to issue certificates to neighboring nodes, and to perform public key authentication through at least two independent certificate chains without relying on any centralized authority. A measure of the communications cost of the key distribution process has been proposed. Simulation results show that the proposed scheme is robust and efficient in the mobility environment of MANET and against malicious node attacks

    Model Dependence of Baryon Decay Enhancement by Cosmic Strings

    Full text link
    Cosmic strings arising from GUTs can catalyse baryon decay processes with strong interaction cross sections. We examine the mechanism by which the cross section is enhanced and find that it depends strongly on the details of the distribution of gauge fields within the string core. We propose a calculational scheme for estimating wavefunction amplification factors and also a physical understanding of the nature of the enhancement process.Comment: 20 pages, LaTeX, DAMTP-R92/2

    Formation of the first three gravitational-wave observations through isolated binary evolution

    Get PDF
    During its first 4 months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. We use our rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel -- classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z = 0.001) from progenitor binaries with typical total masses 160M\gtrsim 160 M_\odot, 60M\gtrsim 60 M_\odot and 90M\gtrsim 90 M_\odot, for GW150914, GW151226, and LVT151012, respectively.Comment: Published in Nature Communication

    The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and FcγR Ligands.

    Get PDF
    The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications

    Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    Get PDF
    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains

    Vortex Solutions in Two-Higgs-Doublet Systems

    Full text link
    We analyze the existence of string-like defects in a two-Higgs-doublet system having SU(2)×U(1)Y×U(1)YSU(2) \times U(1)_Y \times U(1)_{Y^{\prime}} as gauge group. We are able to show that, when certain relations among the parameters hold, these configurations satisfy a set of first order differential equations (Bogomol'nyi equations) and their energy is proportional to their topological charge.}Comment: 9 page

    Ferromagnetic order in U(Rh,Co)Ge

    Full text link
    We report the variation of ferromagnetic order in the pseudo-ternary compounds URh_{1-x}Co_{x}Ge (0 \leq x \leq 1). Magnetization and transport data taken on polycrystalline samples show that the Curie temperature T_{C} gradually increases with increasing Co content from a value of 9.5 K for URhGe to a maximum value of 20 K for x = 0.6 and then steadily decreases to 3 K for UCoGe. The magnetic interaction strength varies smoothly across the series. For all samples the electrical resistivity for T < T_{C} follows the behaviour \rho = \rho_{0} + AT^2. The A coefficient is dominated by scattering at spin waves and is strongly enhanced for x = 0 and 1.Comment: 12 pages (4 figures), submitted to SS
    corecore