140 research outputs found

    Photochemical formation of intricarene

    Get PDF
    Sunlight is the ultimate driver of biosynthesis but photochemical steps late in biosynthetic pathways are very rare. They appear to play a role in the formation of certain furanocembranoids isolated from Caribbean corals. One of these compounds, intricarene, has been suspected to arise from an intramolecular 1,3-dipolar cycloaddition involving an oxidopyrylium. Here we show, by a combination of experiments and theory, that the oxidopyrylium forms under photochemical conditions and that its cycloaddition occurs via a triplet state. The formation of a complex by-product can be rationalized by another photochemical step that involves a conical intersection. Our work raises the question whether intricarene is biosynthesized in the natural habitat of the corals or is an artefact formed during workup. It also demonstrates that the determination of exact irradiation spectra, in combination with quantum chemical calculations, enables the rationalization of complex reaction pathways that involve multiple excited states

    Hole-transfer induced energy transfer in perylene diimide dyads with a donor–spacer–acceptor motif

    Get PDF
    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor–spacer–acceptor motif with polyyne spacers of varying length by pump–probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor–spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor–spacer and the donor–spacer–acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole–multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices

    Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties

    Full text link
    A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are discussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.

    Does heterogeneity spoil the basket? The role of productivity and feedback information on public good provision

    Get PDF
    In a circular neighborhood of eight, each member contributes repeatedly to two local public goods, one with the left and one with the right neighbor. All eight two-person games provide only local feedback information and are structurally independent in spite of their overlapping player sets. Heterogeneity is induced intra-personally by asymmetric productivity in left and right games and inter-personally by two randomly selected group members who are less privileged (LP) by being either less productive or excluded from end-of-period feedback information about their payoffs and neighbors’ contributions. Although both LP-types let the neighborhood as a whole evolve less cooperatively, their spillover dynamics differ. While less productive LPs initiate “spoiling the basket” via their low contributions, LPs with no-end-of-round information are exploited by their neighbors. Furthermore, LP-positioning, closest versus most distant, affects how the neighborhood evolves

    Hole-transfer induced energy transfer in perylene diimide dyads with a donor–spacer–acceptor motif

    Get PDF
    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor–spacer–acceptor motif with polyyne spacers of varying length by pump–probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor–spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor–spacer and the donor–spacer–acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole–multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices
    • 

    corecore