3,544 research outputs found

    New Multiphase CP and DP 1000 MPa strength level grades for improved performance after hot forming

    Get PDF
    Pure martensitic steels have after hot forming limited performance in terms of rest ductility which limits the application in crash relevant parts. New steel grades were designed in the EU project HOTFORM including the corresponding process routes. These steel grades have ferritic-martensitic dual phase (DP) and martensitic-bainitic complex phase (CP) microstructures after hot forming process. The laboratory tests show an improved formability after hot forming. The basic concepts of the new alloys are explained. Furthermore, for validation of upscaling purposes a semi-industrial test is carried out and the results are discussed. The main application is for vehicle safety. This is evaluated by comparing the crash performance of these hot formed grades with cold rolled DP1000 and CP1000 for crash cans in a drop tower test.The research leading to these results was carried out in the framework of HOTFORM project with a financial grant of the Research Programme RFCS (Research Funds for Coal and Steel) under grant agreement (RFSR-CT-2015-00017)

    Application of ÎĽ-Raman spectroscopy to the study of the corrosion products of archaeological coins

    Get PDF
    In this paper, a study of the corrosion products formed on archaeological bronze artefacts excavated in Tharros (Sardinia, Italy) is presented. The investigation was carried out by means of the combination of different analytical techniques, including optical microscopy, micro-Raman spectroscopy (µ-RS), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and X-ray diffraction. The artefacts under study are three bronze coins from the Phoenician-Punic period that are deeply corroded due to the chloride-rich soil of the Tharros excavation site. µ-Raman spectroscopy was chosen to investigate the corroded surfaces of the artefacts because it is a non-destructive technique, it has high spatial resolution, and it makes it possible to discriminate between polymorphs and correlate colour and chemical composition. Through µ-RS, it was possible to identify different mineralogical phases and different polymorphs, such as cuprite (Cu2O), copper trihydroxychloride [Cu2Cl(OH)3] polymorphs, hydroxy lead chloride laurionite [PbCl(OH)] and calcium carbonate polymorph aragonite. The experimental findings highlight that micro-Raman spectroscopy can be used to provide further knowledge regarding the environmental factors that may cause the degradation of archaeological bronzes in soil

    Micro-Raman investigation of dangerous corrosion products of archaeological bronzes from Tharros (Sardinia-Italy)

    Get PDF
    A large number of bronze artefacts have been found during archaeological excavations carried out at Tharros (Sardinia, Italy). The composition of corrosion products have been determined by the combined use of optical microscopy (OM), micro-Raman spectroscopy (ÎĽ-Raman), scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). In particular, we will use ÎĽ-Raman spectroscopy to identify the corrosion products of natural patinas. This technique is equivalent or sometimes more efficient than microscopic and diffraction techniques to identify archaeological corrosion products. It is able to discriminate between different polymorphs, has a high spatial resolution and assures a correlation between the colour and the mineralogical nature. Furthermore has the advantage of being a nondestructive technique, quality highly valued in the cultural heritage

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Short-range order and precipitation in Fe-rich Fe-Cr alloys: Atomistic off-lattice Monte Carlo simulations

    Full text link
    Short-range order (SRO) in Fe-rich Fe-Cr alloys is investigated by means of atomistic off-lattice Monte Carlo simulations in the semi-grand canonical ensemble using classical interatomic potentials. The SRO parameter defined by Cowley [Phys. Rev. B 77, 669 (1950)] is used to quantify the degree of ordering. In agreement with experiments a strong ordering tendency in the Cr distribution at low Cr concentrations (~< 5%) is observed, as manifested in negative values of the SRO parameters. For intermediate Cr concentrations (5% ~< c_Cr ~< 15%) the SRO parameter for the alpha-phase goes through a minimum, but at the solubility limit the alpha-phase still displays a rather strong SRO. In thermodynamic equilibrium for concentrations within the two-phase region the SRO parameter measured over the entire sample therefore comprises the contributions from both the alpha and alpha-prime phases. If both of these contributions are taken into account, it is possible to quantitatively reproduce the experimental results and interpret their physical implications. It is thereby shown that the inversion of the SRO observed experimentally is due to the formation of stable (supercritical) alpha-prime precipitates. It is not related to the loss of SRO in the alpha-phase or to the presence of unstable (subcritical) Cr precipitates in the alpha-phase.Comment: 9 pages, 8 figure

    The effect of electronic energy loss on the dynamics of thermal spikes in Cu

    Get PDF
    We present results of a molecular dynamics simulation study of the effect of electron-ion interactions on the dynamics of the thermal spike in Cu. Interatomic forces are described with a modified embedded atom method potential. We show that the electron-ion interaction acts to reduce the lifetime of the thermal spike and therefore the amount of atomic rearrangement that takes place in energetic displacement cascades in Cu. The results point toward the important effect that inelastic energy losses might have on the dynamics of displacement cascades in the subcascade energy regime where the lifetime of the thermal spike is expected to exceed the electron-phonon coupling tim

    Natural based products for cleaning copper and copper alloys artefacts

    Get PDF
    Copper alloys objects can deteriorate their conservation state through irreversible corrosion. Since in the cultural heritage field every artefact is unique and any loss irreplaceable, solutions for conservation are needed. Hence, there is the necessity to stop the corrosion process with a suitable cleaning and conservation process to avoid further degradation processes without changing its morphological aspect. Chelating solutions are commonly used in chemical cleaning, mainly sodium salts of ethylenediaminetetraacetic acid (EDTA). However, it is resistant to water purification procedures and is not biodegradable. The goal of this study was to see if applying an ecologically friendly chelating agent as an alternative to EDTA cleaning procedures for cultural heritage was suitable. In this study were chosen six natural-based chelators that could be a new green non-toxic alternative to EDTA in corrosion-inhibiting properties. They were tested for cleaning copper artefacts exposed to atmospheric environment in polluted areas. The study considered four amino acids, a glucoheptonate (CSA) and an industrial green chelator (GLDA). The effectiveness was tested on corrosion copper compounds and on laboratory corroded copper sheets. Finally, the cleaning efficacy was tested on four Roman coins and a modern copper painting. To define the cleaning efficacy, surface analytical investigations have been carried out by means ICP-OES, UV-VIS, µ-Raman, spectro-colorimetry, XRD and FTIR. Among the amino acids, alanine was the most effective, showing an unaltered noble patina and a good effective copper recovery from corrosion patinas

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Femtosecond-laser nanostructuring of black diamond films under different gas environments

    Get PDF
    Irradiation of diamond with femtosecond (fs) laser pulses in ultra-high vacuum (UHV) conditions results in the formation of surface periodic nanostructures able to strongly interact with visible and infrared light. As a result, native transparent diamond turns into a completely different material, namely “black” diamond, with outstanding absorptance properties in the solar radiation wavelength range, which can be efficiently exploited in innovative solar energy converters. Of course, even if extremely effective, the use of UHV strongly complicates the fabrication process. In this work, in order to pave the way to an easier and more cost-effective manufacturing workflow of black diamond, we demonstrate that it is possible to ensure the same optical properties as those of UHV-fabricated films by performing an fs-laser nanostructuring at ambient conditions (i.e., room temperature and atmospheric pressure) under a constant He flow, as inferred from the combined use of scanning electron microscopy, Raman spectroscopy, and spectrophotometry analysis. Conversely, if the laser treatment is performed under a compressed air flow, or a N2 flow, the optical properties of black diamond films are not comparable to those of their UHV-fabricated counterparts
    • …
    corecore