4,335 research outputs found
A gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton
We present a gauge invariant approach to photoproduction of mesons on
nucleons within a chiral unitary framework. The interaction kernel for
meson-baryon scattering is derived from the chiral effective Lagrangian and
iterated in a Bethe-Salpeter equation. Within the leading order approximation
to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and
CBELSA/TAPS are analyzed in the threshold region. The importance of gauge
invariance and the precision of various approximations in the interaction
kernel utilized in earlier works are discussed.Comment: 23 pages, 13 figs, EPJ A styl
Biomarker Discovery by Sparse Canonical Correlation Analysis of Complex Clinical Phenotypes of Tuberculosis and Malaria
Biomarker discovery aims to find small subsets of relevant variables in ‘omics data that correlate with the clinical syndromes of interest. Despite the fact that clinical phenotypes are usually characterized by a complex set of clinical parameters, current computational approaches assume univariate targets, e.g. diagnostic classes, against which associations are sought for. We propose an approach based on asymmetrical sparse canonical correlation analysis (SCCA) that finds multivariate correlations between the ‘omics measurements and the complex clinical phenotypes. We correlated plasma proteomics data to multivariate overlapping complex clinical phenotypes from tuberculosis and malaria datasets. We discovered relevant ‘omic biomarkers that have a high correlation to profiles of clinical measurements and are remarkably sparse, containing 1.5–3% of all ‘omic variables. We show that using clinical view projections we obtain remarkable improvements in diagnostic class prediction, up to 11% in tuberculosis and up to 5% in malaria. Our approach finds proteomic-biomarkers that correlate with complex combinations of clinical-biomarkers. Using the clinical-biomarkers improves the accuracy of diagnostic class prediction while not requiring the measurement plasma proteomic profiles of each subject. Our approach makes it feasible to use omics' data to build accurate diagnostic algorithms that can be deployed to community health centres lacking the expensive ‘omics measurement capabilities
Skin-derived dendritic cells acquire and degrade the scrapie agent following in vitro exposure
The accumulation of the scrapie agent in lymphoid tissues following inoculation via the skin is critical for efficient neuroinvasion, but how the agent is initially transported from the skin to the draining lymph node is not known. Langerhans cells (LCs) are specialized antigen-presenting cells that continually sample their microenvironment within the epidermis and transport captured antigens to draining lymph nodes. We considered LCs probable candidates to acquire and transport the scrapie agent after inoculation via the skin. XS106 cells are dendritic cells (DCs) isolated from mouse epidermis with characteristics of mature LC cells. To investigate the potential interaction of LCs with the scrapie agent XS106 cells were exposed to the scrapie agent in vitro. We show that XS106 cells rapidly acquire the scrapie agent following in vitro exposure. In addition, XS106 cells partially degrade the scrapie agent following extended cultivation. These data suggest that LCs might acquire and degrade the scrapie agent after inoculation via the skin, but data from additional experiments demonstrate that this ability could be lost in the presence of lipopolysaccharide or other immunostimulatory molecules. Our studies also imply that LCs would not undergo maturation following uptake of the scrapie agent in the skin, as the expression of surface antigens associated with LC maturation were unaltered following exposure. In conclusion, although LCs or DCs have the potential to acquire the scrapie agent within the epidermis our data suggest it is unlikely that they become activated and stimulated to transport the agent to the draining lymph node
Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote
The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research
Tumour-derived exosomes or microvesicles: another mechanism of tumour escape from the host immune system?
Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects
Dendritic and lymphoid ‘exosomes' regulate immune activation. Tumours release membranous material mimicking these ‘exosomes,' resulting in deletion of reactive lymphocytes. Tumour-derived ‘exosomes' have recently been explored as vaccines, without analysis of their immunologic consequences. This investigation examines the composition of tumour-derived ‘exosomes' and their effects on T lymphocytes. Membranous materials were isolated from ascites of ovarian cancer patients (n=6) and Western immunoblotting was performed for markers associated with ‘exosomes.' Using cultured T cells, ‘exosomes' were evaluated for suppression of CD3-ζ and JAK 3 expressions and induction of apoptosis, measured by DNA fragmentation. ‘Exosome' components mediating suppression of CD3-ζ were isolated by continuous eluting electrophoresis and examined by Western immunoblotting. ‘Exosomes' were shown to be identical with previously characterised shed membrane vesicles by protein staining and TSG101 expression. ‘Exosomes' expressed class I MHC, placental alkaline phosphatase, B23/nucleophosmin, and FasL. ‘Exosomes' suppressed expression of T-cell activation signalling components, CD3-ζ and JAK 3 and induced apoptosis. CD3-ζ suppression was mediated by two components: 26 and 42 kDa. Only the 42 kDa component reacted with anti-FasL antibody. These results indicate that, while ‘exosomes' express tumour antigens, leading to their proposed utility as tumour vaccines, they also can suppress T-cell signalling molecules and induce apoptosis
A Theory of Cheap Control in Embodied Systems
We present a framework for designing cheap control architectures for embodied
agents. Our derivation is guided by the classical problem of universal
approximation, whereby we explore the possibility of exploiting the agent's
embodiment for a new and more efficient universal approximation of behaviors
generated by sensorimotor control. This embodied universal approximation is
compared with the classical non-embodied universal approximation. To exemplify
our approach, we present a detailed quantitative case study for policy models
defined in terms of conditional restricted Boltzmann machines. In contrast to
non-embodied universal approximation, which requires an exponential number of
parameters, in the embodied setting we are able to generate all possible
behaviors with a drastically smaller model, thus obtaining cheap universal
approximation. We test and corroborate the theory experimentally with a
six-legged walking machine. The experiments show that the sufficient controller
complexity predicted by our theory is tight, which means that the theory has
direct practical implications. Keywords: cheap design, embodiment, sensorimotor
loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure
Building the field of health policy and systems research: framing the questions.
In the first of a series of articles addressing the current challenges and opportunities for the development of Health Policy & Systems Research (HPSR), Kabir Sheikh and colleagues lay out the main questions vexing the field
Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al
Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance.
INTRODUCTION: 2018 World Health Organization (WHO) guidelines for the treatment of isoniazid (H)-resistant (Hr) tuberculosis recommend a four-drug regimen: rifampicin (R), ethambutol (E), pyrazinamide (Z) and levofloxacin (Lfx), with or without H ([H]RZE-Lfx). This is used once Hr is known, such that patients complete 6 months of Lfx (≥6[H]RZE-6Lfx). This cohort study assessed the impact of fluoroquinolones (Fq) on treatment effectiveness, accounting for Hr mutations and degree of phenotypic resistance. METHODS: This was a retrospective cohort study of 626 Hr tuberculosis patients notified in London, 2009-2013. Regimens were described and logistic regression undertaken of the association between regimen and negative regimen-specific outcomes (broadly, death due to tuberculosis, treatment failure or disease recurrence). RESULTS: Of 594 individuals with regimen information, 330 (55.6%) were treated with (H)RfZE (Rf=rifamycins) and 211 (35.5%) with (H)RfZE-Fq. The median overall treatment period was 11.9 months and median Z duration 2.1 months. In a univariable logistic regression model comparing (H)RfZE with and without Fqs, there was no difference in the odds of a negative regimen-specific outcome (baseline (H)RfZE, cluster-specific odds ratio 1.05 (95% CI 0.60-1.82), p=0.87; cluster NHS trust). Results varied minimally in a multivariable model. This odds ratio dropped (0.57, 95% CI 0.14-2.28) when Hr genotype was included, but this analysis lacked power (p=0.42). CONCLUSIONS: In a high-income setting, we found a 12-month (H)RfZE regimen with a short Z duration to be similarly effective for Hr tuberculosis with or without a Fq. This regimen may result in fewer adverse events than the WHO recommendations
- …
