1,286 research outputs found

    Influence of slow sand filter cleaning process type on filter media biomass: backwashing versus scraping

    Get PDF
    Biomass was assessed as a new approach for evaluating backwashed slow sand filters (BSF). Slow sand filtration (SSF) is a simple technology for water treatment, where biological mechanisms play a key role in filtration efficiency. Backwashed slow sand filters were previously recommended for small-scale filters (~1 m² of filtration area) as an alternative to conventional filters that are usually cleaned by scraping (ScSF). Biomass was never evaluated in BSF, which is a gap in the knowledge of this technology, considering the importance of its biological mechanisms. Therefore, for the first time, two filters operating under the same conditions were used to compare the influence of backwashing on biomass; one filter was cleaned by backwashing and the other by scraping. Biomass along the filter media depth (40 cm) was assessed by different techniques and compared in terms of cellular biomass (by chloroform fumigation), volatile solids, bacterial community (by 16S rRNA gene sequencing), and observations by scanning electron and fluorescence microscopy. Filters were also monitored and compared regarding filtered water quality and headloss; their differences were related to the different cleaning processes. Overall, filtered water quality was acceptable for slow sand filter standards (turbidity 1 log). However, headloss developed faster on scraped filters, and biomass was different between the two filters. Backwashing did not significantly disturb biomass while scraping changed its surface sand layers. Cell biomass was more abundant and spread across the filtration depth, related to lower headloss, turbidity, and cyanobacterial breakthrough. These results agreed with the water quality and microscopy observations. The bacterial community was also less stratified in the backwashed filter media. These results expand the knowledge of backwashing use in slow sand filters, demonstrating that this process preserves more biomass than scraping. In addition, biomass preservation can lead to bacterial selectivity and faster filter ripening. Considering the importance of biomass preservation on slow sand filtration and its biological filtration mechanisms, the results presented in this paper are promising. The novel insight that BSF can preserve biomass after backwashing may contribute to increasing its application in small communities

    HYDROGEN FROM BIOMASS GAS STEAM REFORMING FOR LOW TEMPERATURE FUEL CELL: ENERGY AND EXERGY ANALYSIS

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming), as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption) is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell). Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H(2) mole fraction (0.6-0.64 mol.mol(-1)) and exergetic efficiency of 91-92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.261159169Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers

    Get PDF
    Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 x 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Baropodometry on women suffering from chronic pelvic pain - a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have associated chronic pelvic pain with a stereotyped pattern of movement and posture, lack of normal body sensations, a characteristic pain distribution. We aimed at evaluating if these postural changes are detectable in baropodometry results in patients with chronic pelvic pain.</p> <p>Methods</p> <p>We performed a prospective study in a university hospital. We selected 32 patients suffering from chronic pelvic pain (study group) and 30 women without this pathology (regular gynecological work out - control group). Pain scores and baropodometric analysis were performed.</p> <p>Results</p> <p>As expected, study group presented higher pain scores than control group. Study and control groups presented similar averages for the maximum pressures to the left and right soles as well as soles supports in the forefeet and hind feet. Women suffering from chronic pelvic pain did not present differences in baropodometric analysis when compared to healthy controls.</p> <p>Conclusions</p> <p>This data demonstrates that postural abnormalities resulting from CPP could not be demonstrated by baropodometric evaluation. Other postural measures should be addressed to evaluate pelvic pain patients.</p

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
    corecore