406 research outputs found

    Cryptococcus neoformans rapidly invades the murine brain by sequential breaching of airway and endothelial tissues barriers, followed by engulfment by microglia

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordCryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function

    Contamination of public parks and squares from Guarulhos (São Paulo State, Brazil ) by Toxocara spp. and Ancylostoma spp.

    Get PDF
    The contaminated soil with mammal feces is an important factor of risk to infection with zoonotic diseases. Amongst these zoonoses are visceral larva migrans and cutaneous larva migrans caused by Toxocara spp. and Ancylostoma spp., respectively. The aim of this study was to assess the environmental contamination by Toxocara spp. eggs and hookworms (Ancylostoma spp.) in public parks and squares in the city of Guarulhos, a metropolitan area of São Paulo, São Paulo State, Brazil. Soil samples were collected, between September and December 2010, and examined using the centrifugal flotation technique with sodium dichromate and zinc sulphate as well as the modified Baermann method. Notably, 35 (74.5%) of the 47 districts surveyed in Guarulhos possessed samples contaminated with Toxocara spp. and/or eggs or larvae of Ancylostoma spp. The frequency of Toxocara spp. and Ancylostoma spp. in the samples from public areas was 68.1% and 46.8%, respectively. Overall, the eastern side of Guarulhos is the region with the highest occurrence of causative agents of larva migrans. In all collection sites, the presence of feces from dogs and cats accompanied by their owners and stray animals were observed. Notably, it is important to adopt measures to control dog and cat breeding, to treat infected animals, and provide health education to the population

    Monoclonal antibodies directed to fucoidan preparations from brown algae

    Get PDF
    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance
    corecore