16,340 research outputs found

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Differing associations of BMI and body fat with asthma and lung function in children.

    No full text
    Current evidence suggests that in children there is a significant, albeit weak, association between asthma and obesity. Studies generally use body mass index (BMI) in evaluating body adiposity, but there are limitations to its use.Children from a population-based study attending follow-up (age 11 years) were weighed, measured and had percent body (PBF) and truncal (PTF) fat assessed using bioelectrical impedance. They were skin prick tested and completed spirometry. Parents completed a validated respiratory questionnaire. Children were defined as normal or overweight according to BMI and PBF cut-offs. We tested the association between these adiposity markers with wheeze, asthma, atopy, and lung-function.Six hundred forty-six children (339 male) completed follow-up. BMI z-score, PBF, and PTF were all positively associated with current wheeze (odds ratio [95% CI]: 1.27 [1.03, 1.57], P = 0.03; 1.05 [1.00, 1.09], P = 0.03; 1.04 [1.00, 1.08], P = 0.04, respectively). Similar trends were seen with asthma. However, when examining girls and boys separately, significant positive associations were found with PBF and PTF and asthma but only in girls (gender interaction P = 0.06 and 0.04, respectively). Associations between being overweight and wheezing and asthma were stronger when overweight was defined by PBF (P = 0.007, 0.03) than BMI (P > 0.05). Higher BMI was significantly associated with an increase in FEV(1) and FVC, but only in girls. Conversely, increasing body fat (PBF and PTF) was associated with reduced FEV(1) and FVC, but only in boys. No associations between adiposity and atopy were found.All adiposity measures were associated with wheeze, asthma, and lung function. However, BMI and PBF did not have the same effects and girls and boys appear to be affected differently

    Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach

    Get PDF
    In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of 'hold-out' or 'split-sample' data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance

    Metal–silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth

    Get PDF
    The liquid metal–liquid silicate partitioning of molybdenum and tungsten during core formation must be well-constrained in order to understand the evolution of Earth and other planetary bodies, in particular because the Hf–W isotopic system is used to date early planetary evolution. The partition coefficients DMo and DW have been suggested to depend on pressure, temperature, silicate and metal compositions, although previous studies have produced varying and inconsistent models. Additionally, the high cationic charges of W and Mo in silicate melts make their partition coefficients particularly sensitive to oxygen fugacity. We combine 48 new high pressure and temperature experimental results with a comprehensive database of previous experiments to re-examine the systematics of Mo and W partitioning, and produce revised partitioning models from the large combined dataset. W partitioning is particularly sensitive to silicate and metallic melt compositions and becomes more siderophile with increasing temperature. We show that W has a 6+ oxidation state in silicate melts over the full experimental fO2 range of ΔIW −1.5 to −3.5. Mo has a 4+ oxidation state, and its partitioning is less sensitive to silicate melt composition but also depends on metallic melt composition. DMo stays approximately constant with increasing depth in Earth. Both W and Mo become more siderophile with increasing C content of the metal: we therefore performed experiments with varying C concentrations and fit epsilon interaction parameters:  = −7.03 ± 0.30 and  = −7.38 ± 0.57. W and Mo along with C are incorporated into a combined N-body accretion and core–mantle differentiation model, which already includes the major rock-forming elements as well as S, and moderately and highly siderophile elements. In this model, oxidation and volatility gradients extend through the protoplanetary disk so that Earth accretes heterogeneously. These gradients, as well as the metal–silicate equilibration pressure, are fitted using a least squares optimisation so that the model Earth-like planet reproduces the composition of the bulk silicate Earth (BSE) in terms of 17 simulated element concentrations (Mg, Fe, Si, Ni, Co, Nb, Ta, V, Cr, S, Pt, Pd, Ru, Ir, W, Mo, and C). The effects of the interaction of W and Mo with Si, S, O, and C in metal are included. Using this model with six separate terrestrial planet accretion simulations, we show that W and Mo require the early accreting Earth to be sulfur-depleted and carbon-enriched so that W and Mo are efficiently partitioned into Earth’s core and do not accumulate in the mantle. When this is the case, the produced Earth-like planets possess mantle compositions matching the BSE for all simulated elements. However, there are two distinct groups of estimates of the bulk mantle’s C abundance in the literature: low (∼100 ppm) and high (∼800 ppm), and all six models are consistent with the higher estimated carbon abundance. The low BSE C abundance would be achievable when the effects of the segregation of dispersed metal droplets produced in deep magma oceans by the disproportionation of Fe2+ to Fe3+ plus metallic Fe is included

    Efficacy of Pentavalent Antimony, Amphotericin B, and Miltefosine in Leishmania amazonensis-Infected Macrophages Under Normoxic and Hypoxic Conditions

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Recently, our group demonstrated that mouse lesions infected with Leishmania. a amazonensis are hypoxic. Evidence indicates the negative impact of hypoxia on the efficacy of a variety of chemotherapeutic agents against tumors, fungi,. bacteria. and malaria parasites. In the present study, comparison of the effect of antileishmanial drug's oil L. amazonensis-infected macrophages under normoxic and hypoxic Conditions was performed. We compared the effect of 5% oxygen tension with a tension of 21% oxygen on peritoneal murine macrophage cultures infected with the parasite and treated with glucantime, amphotericin B. or miltefosine. Analysis of the infection index (percentage of infected macrophages X number of amastigotes per macrophage, dose-dependent efficacy of drugs, and IC(50) values demonstrated that hypoxia conferred it small, but significant resistance to all 3 antileishmanial drugs. The present finding suggest that in vitro assays under hypoxia should not be neglected ill drug studies.94614151417Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenacao Aperfeicoamento de Pessoal de Nivel Superior. Brazil.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    An array of WO3 and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection

    Get PDF
    Terrorists frequently use explosives and they represent an imminent threat to national and global security. Recent events highlight the necessity of explosive detection, demonstrating the need for developing and applying new sensors for explosive gas detection. Semiconducting metal oxide gas sensors can be incorporated into electronic noses, which provide a cheap, portable and highly sensitive device. Using unmodified, admixed and 2-layered sensors consisting of WO3 and chromium titanium oxide (CTO), an array of seven heterojunction semiconducting metal oxide sensors was produced. All seven sensors were tested against four gases associated with explosive materials. The sensitivity was improved by using 2-layered sensors in response to ethanol, ammonia and nitromethane, whereas the admixed sensors showed high sensitivity when exposed to nitrogen dioxide. The selectivity of the array of sensors was tested using machine-learning techniques with a support vector machine. The technique produced good data classification when classifying the gases used within the study

    Delineation of the Innate and Adaptive T-Cell Immune Outcome in the Human Host in Response to Campylobacter jejuni Infection

    Get PDF
    Background: Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought.Methodology: Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFN gamma with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1 beta and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFN gamma, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay.Conclusions: Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFN gamma, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni

    Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin

    Get PDF
    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions

    Predictors of failed attendances in a multi-specialty outpatient centre using electronic databases.

    Get PDF
    BACKGROUND: Failure to keep outpatient medical appointments results in inefficiencies and costs. The objective of this study is to show the factors in an existing electronic database that affect failed appointments and to develop a predictive probability model to increase the effectiveness of interventions. METHODS: A retrospective study was conducted on outpatient clinic attendances at Tan Tock Seng Hospital, Singapore from 2000 to 2004. 22864 patients were randomly sampled for analysis. The outcome measure was failed outpatient appointments according to each patient's latest appointment. RESULTS: Failures comprised of 21% of all appointments and 39% when using the patients' latest appointment. Using odds ratios from the mutliple logistic regression analysis, age group (0.75 to 0.84 for groups above 40 years compared to below 20 years), race (1.48 for Malays, 1.61 for Indians compared to Chinese), days from scheduling to appointment (2.38 for more than 21 days compared to less than 7 days), previous failed appointments (1.79 for more than 60% failures and 4.38 for no previous appointments, compared with less than 20% failures), provision of cell phone number (0.10 for providing numbers compared to otherwise) and distance from hospital (1.14 for more than 14 km compared to less than 6 km) were significantly associated with failed appointments. The predicted probability model's diagnostic accuracy to predict failures is more than 80%. CONCLUSION: A few key variables have shown to adequately account for and predict failed appointments using existing electronic databases. These can be used to develop integrative technological solutions in the outpatient clinic

    MCL-1 is essential for survival but dispensable for metabolic fitness of FOXP3+ regulatory T cells

    Get PDF
    FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological tolerance. Given their importance in immune-related diseases, cancer and obesity, there is increasing interest in targeting the Treg cell compartment therapeutically. New pharmacological inhibitors that specifically target the prosurvival protein MCL-1 may provide this opportunity, as Treg cells are particularly reliant upon this protein. However, there are two distinct isoforms of MCL-1; one located at the outer mitochondrial membrane (OMM) that is required to antagonize apoptosis, and another at the inner mitochondrial membrane (IMM) that is reported to maintain IMM structure and metabolism via ATP production during oxidative phosphorylation. We set out to elucidate the relative importance of these distinct biological functions of MCL-1 in Treg cells to assess whether MCL-1 inhibition might impact upon the metabolism of cells able to resist apoptosis. Conditional deletion of Mcl1 in FOXP3+ Treg cells resulted in a lethal multiorgan autoimmunity due to the depletion of the Treg cell compartment. This striking phenotype was completely rescued by concomitant deletion of the apoptotic effector proteins BAK and BAX, indicating that apoptosis plays a pivotal role in the homeostasis of Treg cells. Notably, MCL-1-deficient Treg cells rescued from apoptosis displayed normal metabolic capacity. Moreover, pharmacological inhibition of MCL-1 in Treg cells resistant to apoptosis did not perturb their metabolic function. We conclude that Treg cells require MCL-1 only to antagonize apoptosis and not for metabolism. Therefore, MCL-1 inhibition could be used to manipulate Treg cell survival for clinical benefit without affecting the metabolic fitness of cells resisting apoptosis
    • …
    corecore