189 research outputs found
Structural analysis of three novel trisaccharides isolated from the fermented beverage of plant extracts
<p>Abstract</p> <p>Background</p> <p>A fermented beverage of plant extracts was prepared from about fifty kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (<it>Leuconostoc </it>spp.) and yeast (<it>Zygosaccharomyces </it>spp. and <it>Pichia </it>spp.). We have previously examined the preparation of novel four trisaccharides from the beverage: <it>O</it>-β-D-fructopyranosyl-(2->6)-<it>O</it>-β-D-glucopyranosyl-(1->3)-D-glucopyranose, <it>O</it>-β-D-fructopyranosyl-(2->6)-<it>O</it>-[β-D-glucopyranosyl-(1->3)]-D-glucopyranose, <it>O</it>-β-D-glucopyranosyl-(1->1)-<it>O</it>-β-D-fructofuranosyl-(2<->1)-α-D-glucopyranoside and <it>O</it>-β-D-galactopyranosyl-(1->1)-<it>O</it>-β-D-fructofuranosyl-(2<->1)- α-D-glucopyranoside.</p> <p>Results</p> <p>Three further novel oligosaccharides have been found from this beverage and isolated from the beverage using carbon-Celite column chromatography and preparative high performance liquid chromatography. Structural confirmation of the saccharides was provided by methylation analysis, MALDI-TOF-MS and NMR measurements.</p> <p>Conclusion</p> <p>The following novel trisaccharides were identified: <it>O</it>-β-D-fructofuranosyl-(2->1)-<it>O</it>-[β-D-glucopyranosyl-(1->3)]-β-D-glucopyranoside (named "3<sup>G</sup>-β-D-glucopyranosyl β, β-isosucrose"), <it>O</it>-β-D-glucopyranosyl-(1->2)-<it>O</it>-[β-D-glucopyranosyl-(1->4)]-D-glucopyranose (4<sup>1</sup>-β-D-glucopyranosyl sophorose) and <it>O</it>-β-D-fructofuranosyl-(2->6)-<it>O</it>-β-D-glucopyranosyl-(1->3)-D-glucopyranose (6<sup>2</sup>-β-D-fructofuranosyl laminaribiose).</p
Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis
The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for >250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules
Comparison of evolutionary algorithms in gene regulatory network model inference
Background: The evolution of high throughput technologies that measure gene expression levels has created a
data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of
these data has made this process very di±cult. At the moment, several methods of discovering qualitative
causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative
analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real
microarray data which are noisy and insu±cient.
Results: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene
regulatory network modelling. The aim is to present the techniques used and o®er a comprehensive comparison
of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression
data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared.
Conclusions: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene
regulatory networks. Promising methods are identi¯ed and a platform for development of appropriate model
formalisms is established
Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe
Genetic and Environmental Causes of Variation in Trait Resilience in Young People
The aim of this multi-informant twin study was to determine the relative role of genetic and environmental factors in explaining variation in trait resilience in adolescents. Participants were consenting families (N = 2,638 twins in 1,394 families), from seven national cohorts (age 12–18 years, both sexes) of monozygotic and dizygotic twins reared together. Questionnaire data on the adolescents’ Ego-resilience (ER89) was collected from mothers, fathers and twins, and analysed by means of multivariate genetic modelling. Variance in trait resilience was best represented in an ADE common pathways model with sex limitation. Variance in the latent psychometric resilience factor was largely explained by additive genetic factors (77% in boys, 70% in girls), with the remaining variance (23 and 30%) attributable to non-shared environmental factors. Additive genetic sources explained more than 50% of the informant specific variation in mothers and fathers scores. In twins, additive and non-additive genetic factors together explained 40% and non-shared environmental factor the remaining 60% of variation. In the mothers’ scores, the additive genetic effect was larger for boys than for girls. The non-additive genetic factor found in the twins’ self ratings was larger in boys than in girls. The remaining sex differences in the specific factors were small. Trait resilience is largely genetically determined. Estimates based on several informants rather than single informants approaches are recommended
A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism
Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross
Individual variation in sensitivity to acute ethanol (EtOH) challenge is associated with alcohol drinking and is a predictor of alcohol abuse. Previous studies have shown that the C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mouse strains differ in responses on certain measures of acute EtOH intoxication. To gain insight into genetic factors contributing to these differences, we performed quantitative trait locus (QTL) analysis of measures of EtOH-induced ataxia (accelerating rotarod), hypothermia, and loss of righting reflex (LORR) duration in a B6 × S1 F2 population. We confirmed that S1 showed greater EtOH-induced hypothermia (specifically at a high dose) and longer LORR compared to B6. QTL analysis revealed several additive and interacting loci for various phenotypes, as well as examples of genotype interactions with sex. QTLs for different EtOH phenotypes were largely non-overlapping, suggesting separable genetic influences on these behaviors. The most compelling main-effect QTLs were for hypothermia on chromosome 16 and for LORR on chromosomes 4 and 6. Several QTLs overlapped with loci repeatedly linked to EtOH drinking in previous mouse studies. The architecture of the traits we examined was complex but clearly amenable to dissection in future studies. Using integrative genomics strategies, plausible functional and positional candidates may be found. Uncovering candidate genes associated with variation in these phenotypes in this population could ultimately shed light on genetic factors underlying sensitivity to EtOH intoxication and risk for alcoholism in humans
- …