136 research outputs found

    PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ–RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes

    Get PDF
    BACKGROUND: Patients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Diabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice. CONCLUSIONS/SIGNIFICANCE: These results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance

    Integrative Taxonomy for Continental-Scale Terrestrial Insect Observations

    Get PDF
    Although 21st century ecology uses unprecedented technology at the largest spatio-temporal scales in history, the data remain reliant on sound taxonomic practices that derive from 18th century science. The importance of accurate species identifications has been assessed repeatedly and in instances where inappropriate assignments have been made there have been costly consequences. The National Ecological Observatory Network (NEON) will use a standardized system based upon an integrative taxonomic foundation to conduct observations of the focal terrestrial insect taxa, ground beetles and mosquitoes, at the continental scale for a 30 year monitoring program. The use of molecular data for continental-scale, multi-decadal research conducted by a geographically widely distributed set of researchers has not been evaluated until this point. The current paper addresses the development of a reference library for verifying species identifications at NEON and the key ways in which this resource will enhance a variety of user communities

    A murine model of ulcerative colitis: induced with sinusitis-derived superantigen and food allergen

    Get PDF
    BACKGROUND: The etiology of ulcerative colitis (UC) is to be understood. The basic pathological feature of UC is intestinal chronic inflammation. Superantigen, such as Staphylococcus enterotoxin B (SEB), is reported to compromise intestinal barrier function by increasing epithelial permeability and initiate inflammation in the intestinal mucosa. Inasmuch as anatomic position of the sinus, chronic sinusitis-derived SEB may follow the secretion and to be swallowed down to the gastrointestinal tract and induce lesions to the intestinal mucosa. METHODS: Sinus wash fluid (SWF, containing SEB) was collected from a group of patients with both chronic sinusitis (CS) and UC. A group of mice were sensitized to ovalbumin (OVA) in the presence of SWF. The sensitized mice were challenged with the specific antigen OVA. The inflammatory status of the colonic tissue was determined with histology, serology and electron microscopy. Using horseradish peroxidase (HRP) as a tracer, another group of mice was stimulated with SWF for 2 hours. The HRP activity was detected in the colonic tissue with enzymatic approaches and electron microscopy. RESULTS: Epithelial hyperpermeability in colonic epithelium was induced by stimulating with SWF. The HRP activity in the colonic mucosa was almost 11 times more in the SWF treated group (3.2 ± 0.6 μg/g tissue) than the control group (0.3 ± 0.1 μg/g tissue). Mice were sensitized using a mixture of SWF and OVA (serum OVA-specific IgE was detected with a highest titer as 1:64). Challenge with OVA induced extensive inflammation in the colonic mucosa by showing (1) marked degranulation in mast cells (MC, 46.3 ± 4.5%) and eosinophils (Eo, 55.7 ± 4.2%); (2) inflammatory cell infiltration (MC = 145.2 ± 11.4; Eo = 215.8 ± 12.5; mononuclear cell = 258.4 ± 15.3/mm(2 )tissue); (3) increased MPO activity (12.9 ± 3.2 U/g tissue) and inflammatory scores (1.8 ± 0.3); (4) mucosal surface ulcers; (5) edema in the lamina propria; (6) bacterial translocation and abscess formation in the subepithelial region. CONCLUSION: Introducing Sinusitis-derived SEB-containing SWF to the gastrointestinal tract compromised colonic mucosal barrier function increasing epithelial permeability to luminal macromolecular protein in mice. The SWF facilitated colonic mucosal sensitization to luminal antigen. Multiple challenging the sensitized colonic mucosa with specific antigen OVA induced inflammation, induced a condition similar to human ulcerative colitis

    Endothelial Domes Encapsulate Adherent Neutrophils and Minimize Increases in Vascular Permeability in Paracellular and Transcellular Emigration

    Get PDF
    Local edema, a cardinal sign of inflammation associates closely with neutrophil emigration. Neutrophil emigration has been described to occur primarily through endothelial junctions (paracellular) and more rarely directly through endothelial cells (transcellular). Recently, we reported that unlike in wild-type (wt) mice, Mac-1-/- (CD11b) neutrophils predominantly emigrated transcellularly and was significantly delayed taking 20–30 min longer than the paracellular emigration (wt). In the present study we noted significant anatomical disruption of the endothelium and hypothesized that transcellular emigration would greatly increase vascular permeability. Surprisingly, despite profound disruption of the endothelial barrier as the neutrophils moved through the cells, the changes in vascular permeability during transcellular emigration (Mac-1-/-) were not increased more than in wt mice. Instead increased vascular permeability completely tracked the number of emigrated cells and as such, permeability changes were delayed in Mac-1-/- mice. However, by 60 min neutrophils from both sets of mice were emigrating in large numbers. Electron-microscopy and spinning disk multichannel fluorescence confocal microscopy revealed endothelial docking structures that progressed to dome-like structures completely covering wt and Mac-1-/- neutrophils. These domes completely enveloped the emigrating neutrophils in both wt and Mac-1-/- mice making the mode of emigration underneath these structures extraneous to barrier function. In conclusion, predominantly paracellular versus predominantly transcellular emigration does not affect vascular barrier integrity as endothelial dome-like structures retain barrier function

    The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations

    Get PDF
    Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used. Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing results that were based on these different anatomical models, particularly when coordinate-based data are not available. The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical parcellations and nomenclatures using strictly qualitative and/or categorical methods. Detailed results from this study are made available via an interactive web site at http://obart.info

    Interference with glycosaminoglycan-chemokine interactions with a probe to alter leukocyte recruitment and inflammation in vivo

    Get PDF
    In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo
    • …
    corecore