525 research outputs found
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Analysis of the functional repertoire of a mutant form of survivin, K129E, which has been linked to lung cancer
Background
Survivin is a protein that is normally present only in G2 and M-phases in somatic cells, however, in cancer cells, it is expressed throughout the cell cycle. A prosurvival factor, survivin is both an inhibitor of apoptosis and an essential mitotic protein, thus it has attracted much attention as a target for new oncotherapies. Despite its prevalence in cancer, reports of survivin mutations have mostly been restricted to loci within its promoter, which increase the abundance of the protein. To date the only published mutation within the coding sequence is an adenine > guanine substitution in exon 4. This polymorphism, which was found in a cohort of Korean lung cancer patients, causes a lysine > glutamic acid mutation (K129E) in the protein. However, whether it plays a causative role in cancer has not been addressed.
Methods
Using site directed mutagenesis we recapitulate K129E expression in cultured human cells and assess its anti-apoptotic and mitotic activities.
Results
K129E retains its anti-apoptotic activity, but causes errors in mitosis and cytokinesis, which may be linked to its reduced affinity for borealin.
Conclusion
K129E expression can induce genomic instability by introducing mitotic aberrations, thus it may play a causative role in cancer
MicroRNA profiling of cisplatinresistant oral squamous cell carcinoma cell lines enriched withcancer-stem-cell-like and epithelial-mesenchymal transition-type features
Oral cancer is of major public health problem in India. Current investigation was aimed to identify
the specific deregulated miRNAs which are responsible for development of resistance phenotype
through regulating their resistance related target gene expression in oral squamous cell carcinoma
(OSCC). Cisplatin-resistant OSCC cell lines were developed from their parental human OSCC cell lines
and subsequently characterised. The resistant cells exhibited enhanced proliferative, clonogenic
capacity with significant up-regulation of P-glycoprotein (ABCB1), c-Myc, survivin, β-catenin and a
putative cancer-stem-like signature with increased expression of CD44, whereas the loss of E-cadherin
signifies induced EMT phenotype. A comparative analysis of miRNA expression profiling in parental
and cisplatin-resistant OSCC cell lines for a selected sets (deregulated miRNAs in head and neck cancer)
revealed resistance specific signature. Moreover, we observed similar expression pattern for these
resistance specific signature miRNAs in neoadjuvant chemotherapy treated and recurrent tumours
compared to those with newly diagnosed primary tumours in patients with OSCC. All these results
revealed that these miRNAs play an important role in the development of cisplatin-resistance mainly
through modulating cancer stem-cell-like and EMT-type properties in OSCC
The Use of Antisense Oligonucleotides in Evaluating Survivin as a Therapeutic Target for Radiation Sensitization in Lung Cancer
Elucidating the mechanism of over and under expression of proteins is critical in developing a better understanding of cancer. Multiple techniques are used to examine differential expression of proteins in cells and assess changes in protein expression in response to therapies such as radiation. Reduced expression can be caused by protein inactivation, mRNA instability, or reduced transcription. The following protocol was used to determine the mechanism for the reduced expression of an antiapoptotic factor, survivin, in normal tissues in response to radiation and the defect in cancer cells that prevents this reduction. We also examined ways to overcome survivin over expression in cancer cells in order to sensitize them to radiation. We will focus on the use of antisense oligonucleotides, cell cycle analysis, and luciferase reporter genes
Recommended from our members
Safeguarding pollinators and their values to human well-being
Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer
and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem
stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change,
pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are
well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective
policy and management responses can be implemented to safeguard pollinators and sustain pollination services
Marked anti-tumour activity of the combination of YM155, a novel survivin suppressant, and platinum-based drugs
Endothelium Derived Nitric Oxide Synthase Negatively Regulates the PDGF-Survivin Pathway during Flow-Dependent Vascular Remodeling
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (−/−)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (−/−) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence
Characterisation of the anti-apoptotic function of survivin-ΔEx3 during TNFα−mediated cell death
Survivin is an oncogenic protein involved in cell division and acts as an anti-apoptotic factor. It is highly expressed in most cancers and is associated with chemotherapy resistance, increased tumour recurrence, and shorter patient survival. This makes anti-survivin therapy an attractive cancer treatment strategy. These functions are mediated by several survivin spliced variants, whose expression may correlate with cancer progression. One of the spliced variants, survivin-ΔEx3, is known to inhibit apoptosis, through undefined mechanisms. Here, we characterised these mechanisms upon TNFα−mediated apoptosis, and showed that survivin-ΔEx3 acts as an adaptor, allowing the formation of a complex between Bcl-2 and activated caspase-3. The Bcl-2/survivin-ΔEx3 complex, but not survivin-ΔEx3 itself, inhibits the activity of caspase-3. Bcl-2 is therefore linked to the postmitochondrial apoptotic machinery by survivin-ΔEx3. Thus, survivin-ΔEx3 plays a key role in the inhibition of caspase-3 activity, and in the control of the mitochondrial checkpoint of apoptosis. This study suggests that targeting survivin-ΔEx3, rather than survivin alone, could be relevant for treating human cancers
The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro
Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma
Association of polymorphisms in survivin gene with the risk of hepatocellular carcinoma in Chinese han population: a case control study
<p>Abstract</p> <p>Background</p> <p>Survivin, one of the strongest apoptosis inhibitors, plays a critical role in the development and progression of hepatocellular carcinoma (HCC). By comparison, relatively little is known about the effect of <it>survivin </it>gene polymorphisms on HCC susceptibility. Our study aimed to investigate the association of <it>survivin </it>gene polymorphisms with the risk of HCC in Chinese han population.</p> <p>Methods</p> <p>A case-control study was conducted in Chinese han population consisting of 178 HCC cases and 196 cancer-free controls. Information on demographic data and related risk factors was collected for all subjects. Polymorphisms of the <it>survivin </it>gene, including three loci of rs8073069, rs9904341 and rs1042489, were selected and genotyped by a polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) technique. Association analysis of genotypes/alleles and haplotypes from these loci with the risk of HCC was conducted under different genetic models.</p> <p>Results</p> <p>Using univariate analysis of rs8073069, rs9904341 and rs1042489 under different genetic models, no statistically significant difference was found in genotype or allele distribution of HCC cases relative to the controls (<it>P </it>> 0.05). Linkage disequilibrium (LD) analysis showed that these loci were in LD. Multivariate logistic regression indicated that with no G-C-T haplotype as reference, the haplotype of G-C-T from these loci was associated with a lower risk for HCC under the recessive model (<it>OR = </it>0.46, 95% confidence interval (<it>CI</it>): 0.24~0.90, <it>P </it>= 0.023). Both HBsAg+ and the medical history of viral hepatitis type B were risk factors for HCC. However, no statistically significant haplotype-environment interaction existed.</p> <p>Conclusions</p> <p>No association between rs8073069, rs9904341 or rs1042489 in <it>survivin </it>gene and the risk of HCC is found in Chinese han population, but rs8073069G-rs9904341C- rs1042489T is perhaps a protective haplotype for HCC.</p
- …
