74 research outputs found

    Surrogate markers and survival in women receiving first-line combination anthracycline chemotherapy for advanced breast cancer

    Get PDF
    Surrogate markers may help predict the effects of first-line treatment on survival. This metaregression analysis examines the relationship between several surrogate markers and survival in women with advanced breast cancer after receiving first-line combination anthracycline chemotherapy 5-fluorouracil, adriamycin and cyclophosphamide (FAC) or 5-fluorouracil, epirubicin and cyclophosphamide (FEC) . From a systematic literature review, we identified 42 randomised trials. The surrogate markers were complete or partial tumour response, progressive disease and time to progression. The treatment effect on survival was quantified by the hazard ratio. The treatment effect on each surrogate marker was quantified by the odds ratio (or ratio of median time to progression). The relationship between survival and each surrogate marker was assessed by a weighted linear regression of the hazard ratio against the odds ratio. There was a significant linear association between survival and complete or partial tumour response (P<0.001, R2=34%), complete tumour response (P=0.02, R2=12%), progressive disease (P<0.001, R2=38%) and time to progression (P<0.0001, R2=56%); R2 is the proportion of the variability in the treatment effect on survival that is explained by the treatment effect on the surrogate marker. Time to progression may be a useful surrogate marker for predicting survival in women receiving first-line anthracycline chemotherapy and could be used to estimate the survival benefit in future trials of first-line chemotherapy compared to FAC or FEC. The other markers, tumour response and progressive disease, were less good

    Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects

    No full text
    BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated

    Standard perioperative management in gastrointestinal surgery

    Get PDF

    A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis

    Get PDF
    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important
    corecore