142 research outputs found

    Helicobacter pylori Induces Activation of Human Peripheral γδ+ T Lymphocytes

    Get PDF
    Helicobacter pylori is a Gram-negative bacterium that causes gastric and duodenal diseases in humans. Despite a robust antibody and cellular immune response, H. pylori infection persists chronically. To understand if and how H. pylori could modulate T cell activation, in the present study we investigated in vitro the interaction between H. pylori and human T lymphocytes freshly isolated from peripheral blood of H. pylori-negative donors. A direct interaction of live, but not killed bacteria with purified CD3+ T lymphocytes was observed by microscopy and confirmed by flow cytometry. Live H. pylori activated CD3+ T lymphocytes and predominantly γδ+ T cells bearing the TCR chain Vδ2. Upon interaction with H. pylori, these cells up-regulated the activation molecule CD69 and produced cytokines (such as TNFα, IFNγ) and chemokines (such as MIP-1β, RANTES) in a non-antigen-specific manner. This activation required viable H. pylori and was not exhibited by other Gram-negative bacteria. The cytotoxin-associated antigen-A (CagA), was at least partially responsible of this activation. Our results suggest that H. pylori can directly interact with T cells and modulate the response of γδ+ T cells, thereby favouring an inflammatory environment which can contribute to the chronic persistence of the bacteria and eventually to the gastric pathology

    Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Introduction Inflammation has been implicated in cancer aggressiveness. As transglutaminase 2 (TG2), which has been associated with inflammatory signaling, has been suggested to play a role in tumor behavior, we propose that TG2 may be an important linker inducing interleukin (IL)-6-mediated cancer-cell aggressiveness, including distant hematogenous metastasis. Methods To investigate the role for TG2 and IL-6, TG2-knocked-down and IL-6-knocked-down cancer cells were generated by using shRNA. Human breast cancer cell xenograft model in highly immunocompromised mice and human advanced breast cancer primary tumor tissue microarrays were used in this study. Results IL-6 production in human breast cancer cells was dependent on their TG2 expression level. In vitro tumor-sphere formation was dependent on TG2 and downstream IL-6 production from cancer cells. Primary tumor growth in the mammary fat pads and distant hematogenous metastasis into the lung was also dependent on TG2 and downstream IL-6 expression levels. The effect of TG2 expression on human breast cancer distant metastasis was investigated by analyzing a tissue microarray of primary tumors from 412 patients with their clinical data after 7 years. TG2 expression in primary tumor tissue was inversely correlated with recurrence-free survival (P = 0.019) and distant metastasis-free survival (DMFS) (P = 0.006) in patients with advanced breast cancer. Furthermore, by using public datasets that included a total of 684 breast cancer patients, we found that the combined high expression of TG2 and IL-6 was associated with shorter DMFS, compared with the high expression of IL-6 only (P = 0.013). Conclusions We provide evidence that TG2 is an important link in IL-6-mediated tumor aggressiveness, and that TG2 could be an important mediator of distant metastasis, both in a xenograft animal model and in patients with advanced breast cancer

    Relationship between tobacco, cagA and vacA i1 virulence factors and bacterial load in patients infected by Helicobacter pylori

    Get PDF
    Background and Aim Several biological and epidemiological studies support a relationship between smoking and Helicobacter pylori (H. pylori) to increase the risk of pathology. However, there have been few studies on the potential synergistic association between specific cagA and vacA virulence factors and smoking in patients infected by Helicobacter pylori. We studied the relationship between smoking and cagA, vacA i1 virulence factors and bacterial load in H. pylori infected patients. Methods Biopsies of the gastric corpus and antrum from 155 consecutive patients in whom there was clinical suspicion of infection by H. pylori were processed. In 106 patients H. pylori infection was detected. Molecular methods were used to quantify the number of microorganisms and presence of cagA and vacA i1 genes. A standardized questionnaire was used to obtain patients’ clinical data and lifestyle variables, including tobacco and alcohol consumption. Adjusted Odds Ratios (ORadjusted) were estimated by unconditional logistic regression. Results cagA was significantly associated with active-smoking at endoscope: ORadjusted 4.52. Evidence of association was found for vacA i1 (ORadjusted 3.15). Bacterial load was higher in active-smokers, although these differences did not yield statistical significance (median of 262.2 versus 79.4 copies of H. pylori per cell). Conclusions The association between smoking and a higher risk of being infected by a virulent bacterial population and with higher bacterial load, support a complex interaction between H. pylori infection and environmental factors

    Induction of TLR-2 and TLR-5 Expression by Helicobacter pylori Switches cagPAI-Dependent Signalling Leading to the Secretion of IL-8 and TNF-α

    Get PDF
    Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI) encoding a type-IV secretion system (T4SS) for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs) and downstream signalling pathways in the development of different pathologies are widely unclear. Here, we explored the involvement of TLR-2 and TLR-5 in THP-1 cells and HEK293 cell lines (stably transfected with TLR-2 or TLR-5) during infection with wild-type H. pylori and isogenic cagPAI mutants. H. pylori triggered enhanced TLR-2 and TLR-5 expression in THP-1, HEK293-TLR2 and HEK293-TLR5 cells, but not in the HEK293 control. In addition, IL-8 and TNF-α cytokine secretion in THP-1 cells was induced in a cagPAI-dependent manner. Furthermore, we show that HEK293 cells are not competent for the uptake of T4SS-delivered CagA, and are therefore ideally suited for studying TLR signalling in the absence of T4SS functions. HEK293 control cells, which do not induce TLR-2 and TLR-5 expression during infection, only secreted cytokines in small amounts, in agreement with T4SS functions being absent. In contrast, HEK293-TLR2 and HEK293-TLR5 cells were highly competent for inducing the secretion of IL-8 and TNF-α cytokines in a cagPAI-independent manner, suggesting that the expression of TLR-2 or TLR-5 has profoundly changed the capability to trigger pro-inflammatory signalling upon infection. Using phospho-specific antibodies and luciferase reporter assays, we further demonstrate that H. pylori induces IRAK-1 and IκB phosphorylation in a TLR-dependent manner, and this was required for activation of transcription factor NF-κB. Finally, NF-κB activation in HEK293-TLR2 and HEK293-TLR5 cells was confirmed by expressing p65-GFP which was translocated from the cytoplasm into the nucleus. These data indicate that H. pylori-induced expression of TLR-2 and TLR-5 can qualitatively shift cagPAI-dependent to cagPAI-independent pro-inflammatory signalling pathways with possible impact on the outcome of H. pylori-associated diseases
    corecore