111 research outputs found

    Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>

    Get PDF
    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling

    Divergent expression of claudin -1, -3, -4, -5 and -7 in developing human lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Claudins are the main components of tight junctions, structures which are associated with cell polarity and permeability. The aim of this study was to analyze the expression of claudins 1, 3, 4, 5, and 7 in developing human lung tissues from 12 to 40 weeks of gestation.</p> <p>Methods</p> <p>47 cases were analyzed by immunohistochemisty for claudins 1, 3, 4, 5 and 7. 23 cases were also investigated by quantitative RT-PCR for claudin-1, -3 and -4.</p> <p>Results</p> <p>Claudin-1 was expressed in epithelium of bronchi and large bronchioles from week 12 onwards but it was not detected in epithelium of developing alveoli. Claudin-3, -4 and -7 were strongly expressed in bronchial epithelium from week 12 to week 40, and they were also expressed in alveoli from week 16 to week 40. Claudin-5 was expressed strongly during all periods in endothelial cells. It was expressed also in epithelium of bronchi from week 12 to week 40, and in alveoli during the canalicular period. RT-PCR analyses revealed detectable amounts of RNAs for claudins 1, 3 and 4 in all cases studied.</p> <p>Conclusion</p> <p>Claudin-1, -3, -4, -5, and -7 are expressed in developing human lung from week 12 to week 40 with distinct locations and in divergent quantities. The expression of claudin-1 was restricted to the bronchial epithelium, whereas claudin-3, -4 and -7 were positive also in alveolar epithelium as well as in the bronchial epithelium. All claudins studied are linked to the development of airways, whereas claudin-3, -4, -5 and -7, but not claudin-1, are involved in the development of acinus and the differentiation of alveolar epithelial cells.</p

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Pulmonary arterial medial smooth muscle thickness in sudden infant death syndrome: an analysis of subsets of 73 cases

    Get PDF
    Previous studies addressing pulmonary artery morphology have compared cases of sudden infant death syndrome (SIDS) to controls but none have compared demographic profiles, exposure to potentially hypoxic risk factors and other pathologic variables in SIDS cases grouped according to pulmonary artery medial smooth muscle thickness. Aims: To compare the relative medial thickness (RMT) in alveolar wall arteries (AW) in SIDS cases with that in age-matched controls and 2. Compare demographic, clinical, and pathologic characteristics among three subsets of SIDS cases based upon alveolar wall (AW) RMT. Retrospective morphometric planimetry of all muscularized arteries in standardized right apical lung sections in 73 SIDS cases divided into three groups based on increasing AW RMT as well as 19 controls age-matched to 19 of the SIDS cases. SIDS and age-matched control cases did not differ with respect to AW RMT or other demographic variables. The SIDS group with the thickest AW RMT had significantly more males and premature birth than the other groups, but the groups did not differ for known clinical risk factors that would potentially expose them to hypoxia. Pathologic variables, including pulmonary inflammation, gastric aspiration, intra-alveolar siderophages, cardiac valve circumferences, and heart and liver weights, were not different between groups. Age was not significantly correlated with RMT of alveolar wall and pre-acinar arteries but was significant at p = .018 for small intra-acinar arteries. The groups were different for RMT of small pre-acinar and intra-acinar arteries, which increased with increasing AW RMT. Statistical differences should not necessarily be equated with clinical importance, however future research incorporating more quantified historical data is recommended

    Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

    Get PDF
    Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed

    Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

    Get PDF
    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
    corecore