1,512 research outputs found

    Global Analysis of the Higgs Candidate with Mass ~ 125 GeV

    Get PDF
    We analyze the properties of the Higgs candidate with mass ~ 125 GeV discovered by the CMS and ATLAS Collaborations, constraining the possible deviations of its couplings from those of a Standard Model Higgs boson. The CMS, ATLAS and Tevatron data are compatible with Standard Model couplings to massive gauge bosons and fermions, and disfavour several types of composite Higgs models unless their couplings resemble those in the Standard Model. We show that the couplings of the Higgs candidate are consistent with a linear dependence on particle masses, scaled by the electroweak scale ~ 246 GeV, the power law and the mass scale both having uncertainties ~ 20%.Comment: 22 pages, 9 figures, v2 incorporates experimental data released during July 2012 and corrected (and improved) treatment of mass dependence of coupling

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl

    ATLAS Z Excess in Minimal Supersymmetric Standard Model

    Get PDF
    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.Comment: 13 pages, 7 figures; published versio

    Anomalous Couplings in Double Higgs Production

    Full text link
    The process of gluon-initiated double Higgs production is sensitive to non-linear interactions of the Higgs boson. In the context of the Standard Model, studies of this process focused on the extraction of the Higgs trilinear coupling. In a general parametrization of New Physics effects, however, an even more interesting interaction that can be tested through this channel is the (ttbar hh) coupling. This interaction vanishes in the Standard Model and is a genuine signature of theories in which the Higgs boson emerges from a strongly-interacting sector. In this paper we perform a model-independent estimate of the LHC potential to detect anomalous Higgs couplings in gluon-fusion double Higgs production. We find that while the sensitivity to the trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include experimental uncertainty on the Higgs couplings, references adde

    On the Numerical Evaluation of Loop Integrals With Mellin-Barnes Representations

    Full text link
    An improved method is presented for the numerical evaluation of multi-loop integrals in dimensional regularization. The technique is based on Mellin-Barnes representations, which have been used earlier to develop algorithms for the extraction of ultraviolet and infrared divergencies. The coefficients of these singularities and the non-singular part can be integrated numerically. However, the numerical integration often does not converge for diagrams with massive propagators and physical branch cuts. In this work, several steps are proposed which substantially improve the behavior of the numerical integrals. The efficacy of the method is demonstrated by calculating several two-loop examples, some of which have not been known before.Comment: 13 pp. LaTe

    Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording

    Get PDF
    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository

    Single Cut Integration

    Get PDF
    We present an analytic technique for evaluating single cuts for one-loop integrands, where exactly one propagator is taken to be on shell. Our method extends the double-cut integration formalism of one-loop amplitudes to the single-cut case. We argue that single cuts give meaningful information about amplitudes when taken at the integrand level. We discuss applications to the computation of tadpole coefficients.Comment: v2: corrected typo in abstrac

    Probing Higgs couplings with high p T Higgs production

    Get PDF
    Possible extensions of the Standard Model predict modifications of the Higgs couplings to gluons and to the SM top quark. The values of these two couplings can, in general, be independent. We discuss a way to measure these interactions by studying the Higgs production at high p T within an effective field theory formalism. We also propose an observable r \ub1 with reduced theoretical errors and suggest its experimental interpretation. \ua9 2014 SISSA

    Theoretical Constraints on the Higgs Effective Couplings

    Full text link
    We derive constraints on the sign of couplings in an effective Higgs Lagrangian using prime principles such as the naturalness principle, global symmetries, and unitarity. Specifically, we study four dimension-six operators, O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is positive except when there are triplet scalars, resulting in a reduction in the Higgs on-shell coupling from their standard model (SM) expectations if no other operators contribute, 2) the linear combination of O_H and O_y controlling the overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced by a new colored fermion is such that it interferes destructively with the SM top contribution in the gluon fusion production of the Higgs, if the new fermion cancels the top quadratic divergence in the Higgs mass, and 4) the correlation between naturalness and the sign of O_gamma is similar to that of O_g, when there is a new set of heavy electroweak gauge bosons. Next considering a composite scalar for the Higgs, we find the reduction in the on-shell Higgs couplings persists. If further assuming a collective breaking mechanism as in little Higgs theories, the coefficient of O_H remains positive even in the presence of triplet scalars. In the end, we conclude that the gluon fusion production of the Higgs boson is reduced from the SM rate in all composite Higgs models. Our study suggests a wealth of information could be revealed by precise measurements of the Higgs couplings, providing strong motivations for both improving on measurements at the LHC and building a precision machine such as the linear collider.Comment: 37 pages, one figure; v2: improved discussion on dispersion relation and other minor modifications; version accepted for publication
    • 

    corecore