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1 Introduction

Precision calculations in gauge theories such as QCD are needed for observations in hadron

collider experiments and are an important motivation for studies of higher-order scattering

in general. Recently there have been rapid developments in computational techniques,

many centered around so-called unitarity methods [1, 2].

The idea underlying the unitarity methods is to constrain amplitudes by their branch

cuts in various channels. The constraints from cuts are sufficient only for certain classes

of amplitudes, such as one-loop amplitudes in massless theories [3]. Unitarity cuts are

evaluated by the Cutkosky rules [4], which put two propagators on shell. Rather than

completing the dispersion integral at this point, unitarity methods store the imaginary

part of the amplitude obtained this way, and accumulate similar information from all

possible cuts in analytic continuations to other kinematic regions.

Putting more than two propagators of a one-loop amplitude on shell gives a “general-

ized” unitarity cut [5–16]. It isolates the part of the amplitude from diagrams containing

the specific propagators being cut. An advantage of such cuts is that the delta functions

that are used to place the propagators on shell effectively reduce the dimension of the

remaining integral. So these generalized cuts are relatively easy to evaluate but give infor-

mation about a correspondingly smaller part of the full amplitude. However, generalized

unitarity can also be taken in the other direction, by cutting just one propagator. This is

the “single cut” we discuss in this paper. Our focus differs from previous studies [17–20]

in that we are interested in the explicit evaluation of the 4-dimensional single-cut integral,

with standard Feynman propagators, with a view towards computing tadpole coefficients

in amplitudes with internal masses.
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One-loop amplitudes have an expansion in terms of master integrals, which are scalar

box, triangle, bubble and tadpole integrals, with coefficients that are rational functions

of the kinematic invariants [21–36]. In practice, unitarity methods operate by pattern

matching cuts of amplitudes with cuts of master integrals. Tadpole integrals lack cuts in

physical channels (double cuts), but we hope that single cuts should be useful to calculate

their coefficients. In principle, single cuts should give information about all parts of the

amplitude. We study the single cuts of master integrals and find that the tadpole gives a

rational value, while the others have purely logarithmic single cuts. Therefore the tadpole

coefficients can be targeted by discarding all logarithms. Other approaches to analytic com-

putation of tadpole coefficients have been proposed, using universal UV and IR divergent

behavior [37, 38] or introducing an auxiliary propagator [39].

Inspired by the formalism for explicit evaluation of double cuts [40–48], where the

two-dimensional (or (D−2)-dimensional) integral is performed algebraically by the Cauchy

residue theorem, we rewrite our loop momentum in terms of spinor variables, which can in

turn be exchanged for a complex variable and a real parameter. Since we now have fewer

cut constraints than in a double cut, we are not able to evaluate the integral over the real

parameter trivially. In fact, we leave it unevaluated. We find that it is sufficient to work

at the integrand level; moreover, the full single cut integral will typically diverge. (Su-

persymmetric theories are a notable exception: there, single cuts are well defined [18] and

can be used to check expressions for planar multi-loop amplitudes [49].) The integral over

the complex variable is addressed by the Generalized Cauchy Theorem, invoked similarly

in [48]. If we are computing single cuts to find tadpole coefficients, we see another major

difference compared to double cuts. While double cut evaluations were a matter of evalu-

ating residues at poles, here it is the contour integral part of the formula that dominates

the tadpole contribution, so we do not compute residues at all.

Working at the integrand level is important because functions of the loop momentum

can have non-vanishing single cuts even if they integrate to zero [18]. Therefore, a proper

expansion of the integrand from a Feynman diagram includes all such terms, which have

been thoroughly classified in the context of four-dimensional reduction [10, 50].

The paper is organized as follows. In section 2, we explain the phase space integration

for single cuts and evaluate the cuts for master integrals. In section 3, we present the single

cuts of the first few types of integrands with tensor numerators. In section 4, we extract

the tadpole coefficients in some sample tensor integrands. In section 5, we discuss the

modifications necessary in the case of massless external legs (which are vanishing Gram

determinants for bubble integrals). The appendix contains further details on the phase

space parametrization.

2 Evaluation of the single cut

Our starting point is the one-loop integrand,

I =
N(k)

D0D1 · · ·Dk
, (2.1)
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where N(k) is a polynomial in the loop momentum k, and the denominator factors are

Di = (k − Ki)
2 − m2

i . (2.2)

The single cut is a singularity of the amplitude selecting single propagators. We define the

4-dimensional single-cut operator for a particular propagator Di to act on the integrand as

∆Di
[I] ≡

∫

d4k δ(+)(Di)

(

N(k)

D0 · · ·Di−1Di+1 · · ·Dk

)

. (2.3)

The single cut must be applied to the integrand, because there are non-vanishing contri-

butions from so-called spurious terms (terms that vanish upon integration). Working with

the integrand allows us to identify the particular propagator being cut.

To evaluate the single cut analytically, we introduce convenient variables and reference

vectors following [42, 48, 51]. First, we would like to exchange the original loop momentum

variable k for a null vector ℓ1 in order to make use of the spinor formalism [52–56]. With

respect to an arbitrary Lorentz vector K satisfying K2 6= 0 and K0 > 0, we decompose the

loop momentum variable,

k = ℓ1 + ξK, (2.4)

where ξ is a scalar factor taking a value such that ℓ1 is null. This condition is implemented

by another delta function and an integral over ξ,
∫

d4k (•) =

∫

dξ

∫

d4ℓ1 δ(+)(ℓ2
1)(2ℓ1 · K)(•).

Let us now look at the single cut integral, (2.3). For simplicity, suppose we have redefined

the loop momentum so that Ki = 0. We comment further on allowable redefinitions below.

Also, let m = mi. Applying the change of variables (2.4), we have

∫

d4k δ(+)(k2 − m2)(•) =

∫

dξ

∫

d4ℓ1 δ(+)(ℓ2
1)

2ℓ1 · K√
∆

δ(ξ − ξ̄)(•), (2.5)

where

∆ = (2ℓ1 · K)2 + 4K2m2, ξ̄ =
−2ℓ1 · K +

√
∆

2K2
.

We continue by exchanging the integration of ℓ1 over the lightcone for an integral over the

complex plane and a real parameter t. First, we express the vector K as a sum of two

null vectors, p and q, which will later allow us to integrate over familiar complex variables

instead of spinors. Since our choice of K was arbitrary, we can consider the choice of null

p and q to be the starting point, making sure that p · q 6= 0 and p0 + q0 > 0.

K = p + q, p2 = q2 = 0.

The replacement for the loop momentum is

ℓµ
1 = t

(

pµ + zz̄qµ +
z

2
〈q|γµ|p] − z̄

2
〈p|γµ|q]

)

. (2.6)
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Since 2p · q = K2 and 2ℓ1 · K = t(1 + zz̄)K2, the integral measure becomes

∫

d4k δ(+)(k2 − m2)(•) =

∫

dξ

∫ ∞

0

dt

4

∫

(idz ∧ dz̄)
K2t2(1 + zz̄) δ(ξ − ξ̄)
√

t2(1 + zz̄)2 + u
(•), (2.7)

where now

ξ̄ =
u

2

1
√

t2(1 + zz̄)2 + u + t(1 + zz̄)
, (2.8)

and we have defined

u ≡ 4m2

K2
.

We will find it convenient to work in the limit u → 0, equivalent to choosing our arbitrary

K such that K2 ≫ m2. In fact, we will be able to set u = 0 exactly in all the cuts we study.

Now, the ξ integral can be performed immediately by the delta function substitution.

The complex integration over z and z̄ will be performed by the Generalized Cauchy Formula

as described in [48]. That is, for the integrand F (z, z̄) we construct a primitive G(z, z̄)

with respect to, say, z̄. Let D be a disk in the complex plane encompassing all poles of

G(z, z̄) viewed as a function of z. Then

∫

D

F (z, z̄) dz̄ ∧ dz =

∮

∂D

dz G(z, z̄) − 2πi
∑

poles zj

Res{G(z, z̄), zj}. (2.9)

In practice, we use Λ to denote the radius of the disk D and rewrite the complex

variable in terms of polar coordinates:

z = reiα; D = {(r, α) | 0 ≤ r ≤ Λ, 0 ≤ α < 2π}.

Additional details on the phase space parametrization are given in the appendix.

The final integration over t will not actually be carried out; we extract the information

we need at the integrand level. In fact, the integral over t typically diverges. It should be

cut off both from above and below, and any further transformations should be consistent

with such a cutoff. For example, we allow linear shifts of the original loop momentum, but

not global rescalings.

Analytically, the t-dependence of the cut integrands turns out to be useful, as we

can restrict our attention to leading or subleading terms in t in order to compute tadpole

coefficients.

In our first change of variables for the single cut, (2.5), we assumed that the cut

propagator was already in the form (k2 − m2). In fact, it is good to redefine the loop

momentum k → k + Ki in each term of the single cut operation (2.3) so that the delta

function is δ(+)(k2 −m2). Because the single cut integral diverges, this redefinition is most

obviously valid in the limit of large K2, which we will implement routinely. Otherwise, we

must pay attention to the details of the cutoffs.

We will now study the single cuts of the integrands of master integrals.
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Single cut of tadpole

The scalar tadpole is the simplest integrand allowing the single cut operation. With the

variables of (2.7),

∆D0

[

1

k2 − m2
0

]

=

∫

dt

4

∫

(idz ∧ dz̄)
K2t2(1 + zz̄)

√

t2(1 + zz̄)2 + u
.

One z̄-primitive of the integrand is

P1 ≡ (1/z)K2
√

t2(1 + zz̄)2 + u, (2.10)

so the result of applying the Generalized Cauchy Formula (2.9) is

(2π)K2
(

√

t2(1 + Λ2)2 + u −
√

t2 + u
)

.

The factor of i has dropped out in converting the differential form (see the appendix

for details).

In the limit of vanishing u, the single cut of the tadpole is therefore

(2π)K2t

(

Λ2 +
u

2t2(1 + Λ2)
− u

2t2

)

.

We omit writing the integral over t (and the factor of 4 in the denominator), since it will

not be necessary in this paper to carry out this integration. In subsequent integrals we will

also drop all subleading terms in u so that the formulas are more manageable, while still

sufficiently distinct.

Single cut of bubble

Consider the integrand 1/(D0D1), and take the single cut of D0.

∆D0

[

1

(k2 − m2
0)((k − K1)2 − m2

1)

]

=

∫

d4k δ(+)(k2 − m2
0)

1

D1
.

Now, under the integral with the delta function,

D1 = f1 − 2ℓ1 · K1 − 2ξ̄K · K1, (2.11)

where

fi ≡ K2
i − m2

i + m2
0. (2.12)

In the limit of vanishing u, we also have ξ̄ → 0, so we can neglect the last term of (2.11).1

So we proceed with the replacement D1 = f1 − t
〈

λ|K1|λ̃
]

, followed by expansion in the

null vectors p and q. The single cut is

∫

(idz ∧ dz̄)
K2t

F(K1, z, z̄)
, (2.13)

1Indeed, one can check using (2.8) that in the rest frame K = (K0, 0, 0, 0), this term falls off as 1/K0.
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where we have defined

F(Ki, z, z̄) ≡ fi − t (〈p|Ki|p] + z̄ 〈p|Ki|q] + z 〈q|Ki|p] + zz̄ 〈q|Ki|q]) . (2.14)

One z̄-primitive of the integrand in (2.13) is given by

P2 ≡ − K2 logF(K1, z, z̄)

〈p|K1|q] + z 〈q|K1|q]
. (2.15)

Single cut of triangle and box

The analysis of triangle and box integrands is similar to the bubble. For the triangle

integrand, 1/(D0D1D2), the single cut can be expressed in terms of the primitive, given by

P3 =

∫

dz̄
K2t

F(K1, z, z̄)F(K2, z, z̄)
(2.16)

= − K2

D(K1,K2, z)
log

(F(K1, z, z̄)

F(K2, z, z̄)

)

. (2.17)

For the box 1/(D0D1D2D3), the z̄-primitive is given by

P4 =

∫

dz̄
K2t

F(K1, z, z̄)F(K2, z, z̄)F(K3, z, z̄)
(2.18)

=
K2 〈λ|K1|q] logF(K1, z, z̄)

D(K1,K2, z)D(K3,K1, z)
+

K2 〈λ|K2|q] logF(K2, z, z̄)

D(K2,K3, z)D(K1,K2, z)

+
K2 〈λ|K3|q] logF(K3, z, z̄)

D(K3,K1, z)D(K2,K3, z)
. (2.19)

We have defined

D(Ki,Kj , z) ≡ fj 〈λ|Ki|q] − fi 〈λ|Kj |q] − t [pq] 〈λ|KiKj |λ〉 , where |λ〉 = |p〉 + z |q〉 .

Overview: master integrands and strategy for single cuts

We have found the primitives P1,P2,P3,P4, which are associated to the various master

integrands. The single-cut calculation would be completed by the Generalized Cauchy

formula, (2.9). It turns out that in the limit Λ → ∞, we can ignore the residues and

restrict our attention to the closed line integral term. In polar coordinates,

∮

∂D

Pn(z, z̄) dz = i

∫ 2π

0
dα ΛeiαPn(Λeiα,Λe−iα). (2.20)

In the limit Λ → ∞, the leading behavior of the integrands is

ΛeiαP1 ≃ Λ2t, (2.21)

ΛeiαPn ≃ log(Λ2)

Λn−2
, n = 2, 3, 4. (2.22)

The higher-point integrands are suppressed by powers of Λ. Moreover, among all these

primitives, all rational terms come from tadpoles. Tadpole primitives are purely rational,
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while the others are purely logarithmic. Therefore, in an algorithm targeting tadpole

coefficients, we will select terms of the single cut with specific dependence on Λ2.

For fully generic integrands, we only need the single-cut operator selecting the terms

proportional to Λ2t, which we denote by a bar.

∆̄Di
[I] ≡ ∆Di

[I]
∣

∣

∣

Λ2t−terms
. (2.23)

For integrands with null external momenta, it is convenient to define some further refine-

ments of the operator, as follows.

∆̃D0
[I] ≡ ∆D0

[I]
∣

∣

∣

Λ4t2−terms
.

∆̂D0
[I] ≡ ∆D0

[I]
∣

∣

∣

log(〈q|K1|q]Λ2)−terms
. (2.24)

In the case where the masses of the propagators are not all distinct, we may also want to

collect the single cuts of all propagators with a given mass, as indicated by the subscript m2.

∆̄m2 [I] ≡
∑

i:mi=m

∆̄Di
[I] . (2.25)

It is now clear how to distinguish single cuts of the various master integrands. Since

spurious terms give nonvanishing single cuts as well, we need to know them in more detail.

We now compute the single cuts of some integrands in general form. The results will allow

us to compute single cuts of spurious terms on one hand and the single cut of a total

integrand expansion on the other.

3 Single cut of general integrands

In listing the single-cut results of general integrands, it is as convenient and more useful to

list them in terms of general numerators and denominators. A general integrand will take

the form

In,p(A1, . . . , Ap;D0, . . . ,Dn−1) ≡
∏p

i=1(2 k · Ai)
∏n−1

j=0 Dj

, (3.1)

since any appearance of the contraction k2 in the numerator can be replaced by m2
0 in the

single cut. Using (2.7) in the limit u → 0, we see that the single cut of D0 gives

∆D0
[In,p] = K2tp+1

∫ 2π

0
dα Gn,p(A1, . . . , Ap;D0, . . . ,Dn;α), (3.2)

where we have defined

Gn,p(A1, . . . , Ap;D0, . . . ,Dn−1;α) ≡ Λeiα

[

∫

dz̄

∏p
i=1〈λ|Ai|λ̃]

∏n−1
j=1 (fj − t〈λ|Kj |λ̃])

]

z→Λeiα,z̄→Λe−iα

.

(3.3)

The spinors 〈λ| and |λ̃] depend on z and z̄ as follows,

〈λ| = 〈p| + z〈q|, |λ̃] = |p] + z̄|q]. (3.4)

The single cut of In,p is known once the integral Gn,p has been computed. We now compute

the single cut of In,p for several values of (n, p).
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Computation of ∆̄D0
[I1,1]

It is easy to show that

G1,1(A1;D0;α) = Λ2〈p|A1|p] + Λ3eiα〈q|A1|p] +
Λ3

2
e−iα〈p|A1|q] +

Λ4

2
〈q|A1|q]. (3.5)

Therefore, paying attention to the powers of t included in (3.2), we find the following values

for the first two refinements of single-cut operators.

∆̄D0
[I1,1(A1;D0)] = 0.

∆̃D0
[I1,1(A1;D0)] = πK2Λ4(2A1 · q)t2. (3.6)

Computation of ∆̄D0
[I2,1]

The Λ2t−part of the single cut (3.2) is the Λ2/t part of G2,1, which is

−Λ2

t

A1 · q
K1 · q

.

The single cut of I2,1 is obtained after the trivial integration over α, giving

∆̄D0
[I2,1(A1;D0,D1)] = −A1 · q

K1 · q
∆D0

[

1

D0

]

. (3.7)

In the u → 0 limit, ∆̄D0
[I2,1(A1;D0,D1)] is therefore proportional to the single cut of the

tadpole.

For later convenience we compute ∆̂D0
[I2,1] and ∆̄m2 [I2,1] in the case where K2

1 = 0

and m2
0 = m2

1 = m2. The logarithmic part of G2,1 is a lengthy expression. The logarithmic

part of of the single cut of I2,1 is

∆̂D0
[I2,1(A1;D0,D1)] = 2πK2t

[

〈p|K1|q]〈q|A1|p]

〈q|K1|q]2
+

〈p|K1|p]〈q|A1|q]
〈q|K1|q]2

+
〈p|A1|q]〈q|K1|p]

〈q|K1|q]2
− 2〈p|K1|q]〈q|A1|q]〈q|K1|p]

〈q|K1|q]3
− 〈p|A1|p]

〈q|K1|q]

]

≡
∑

a

ca(t)v
µ
a A1µ. (3.8)

The last line is simply an abbreviation for the expression, which will be convenient short-

hand in one of the examples we give in section 5. In that case where K2
1 = 0 and

m2
0 = m2

1 = m2, we also have

∆̄m2 [I2,1(A1;D0,D1)] = ∆̄D0
[I2,1(A1;D0,D1)] + ∆̄D1

[I2,1(A1;D0,D1)] = 0. (3.9)

The single cut ∆̄D1
is computed redefining the loop momentum k → k + K1, as described

in section 2.

– 8 –



J
H
E
P
0
1
(
2
0
1
1
)
1
3
5

Computation of ∆̄D0
[I2,2]

The expression of G2,2 is rather complicated and it is not shown here. We obtain ∆̄D0
[I2,2]

(or ∆̃D0
[I2,2]) by expanding K2t3G2,2 in the limit Λ → ∞ and then integrating the

Λ2t−terms (or Λ4t2−terms). The result is

∆̄D0
[I2,2(A1, A2;D0,D1)] = −f1

(A1 · q)(A2 · q)
(K1 · q)2

∆D0

[

1

D0

]

, (3.10)

∆̃D0
[I2,2(A1, A2;D0,D1)] = −2πK2Λ4 (A1 · q)(A2 · q)

(K1 · q)
t2. (3.11)

For later convenience we compute ∆̄m2I2,2 in the case where K2
1 = 0 and m2

0 = m2
1 = m2,

∆̄m2 [I2,2(A1, A2;D0,D1)] = ∆̄D0
[I2,2(A1, A2;D0,D1)] + ∆̄D1

[I2,2(A1, A2;D0,D1)]

= −{(2K1 · A1)∆̄D0
[I2,1(A2;D0,D1)] + (A1 ↔ A2)}. (3.12)

Computation of ∆̄D0
[I3,1]

The integrand K2t2G3,1(A1;D0,D1,D2;α) does not contain Λ2t−terms. Therefore ∆̄D0
[I3,1]

vanishes.

∆̄D0
[I3,1(A1;D0,D1,D2)] = 0. (3.13)

This result confirms the absence of tadpole integrals in the reduction of I3,1.

Computation of ∆̄D0
[I3,2]

The expression of G3,2(A1, A2;D0,D1,D2;α) is rather complicated and is not shown. As in

the previous cases, K2t3G3,2 has to be expanded in the Λ → ∞ limit. We obtain ∆̄D0
[I3,2]

by integrating the terms of O(Λ2t), finding

∆̄D0
[I3,2(A1, A2;D0,D1,D2)] =

(A1 · q)(A2 · q)
(K1 · q)(K2 · q)

∆D0

[

1

D0

]

. (3.14)

Computation of ∆̄D0
[I3,3]

We obtain ∆̄D0
[I3,3] by taking the Λ → ∞ limit of K2t4G3,3 and integrating the Λ2t−terms,

to get

∆̄D0
[I3,3(A1, A2, A3;D0,D1,D2)] =

2
∑

i=1

fi
(A1 · q)(A2 · q)(A3 · q)
(K1 · q)(K2 · q)(Ki · q)

∆D0

[

1

D0

]

. (3.15)

4 Computation of tadpole coefficients

In this section we show how the single cut allows the computation of tadpole coefficients

in several examples of small integrands.

We will compute a(0), the coefficient of the tadpole integral A0(m
2
0), by the single cut

operator ∆̄D0
defined in (2.23). We look at one-loop integrands of the type

In,p ≡
∏p

i=1(2 k · Ri)
∏n−1

j=0 Dj

. (4.1)
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As described in the setup, when we cut the propagator D0, we set K0 = 0. Any appearance

of the contraction k2 in the numerator should then immediately be replaced by m2
0, so that

this form of the integrand is in fact general.

For now, we assume that the Gram determinant of In,p is nonvanishing and that the

masses are non-degenerate. When this is not the case, further modifications are necessary,

which we address in the following section.

We will describe the derivation of the tadpole coefficients for the integrands with

(n, p) = {(2, 1), (2, 2), (3, 2), (3, 3)}. We have also verified the result for (n, p) = (4, 3), but

as this calculation does not involve any notable new features, we do not present it here.

We have used FeynCalc [57] to check our results against those from Passarino-Veltman

reduction.

The idea underlying our procedure is to expand the integrand in such a way that

spurious terms are easily recognized. The Ossola-Papadopoulos-Pittau (OPP) decomposi-

tion [10] is well suited for this purpose. We take all the coefficients of both spurious and

physical terms as unknowns. We then drop the physical terms except for the tadpole. Single

cuts of all remaining terms are evaluated using the general results of the previous section.

The tensor
∏

i Ri is expanded in a basis constructed from fixed vectors; a convenient choice

includes external momenta and orthogonal vectors, as in the OPP classification. Thanks

to this expansion, the single-cut equation becomes a system of separate equations, which

are the coefficients of independent tensors. In the following examples, we illustrate the

derivation of the system and the solution of the tadpole coefficient.

Tadpole coefficient of I2,1

The starting point is the OPP decomposition of I2,1 given by

I2,1 =
a(0)

D0
+ b̃11(01)

2k · ℓ7

D0D1
+ b̃21(01)

2k · ℓ8

D0D1
+ b̃0(01)

2k · n
D0D1

+ · · · . (4.2)

Terms whose single cut contains no Λ2t contribution are included in “· · · ” . These terms

will be systematically neglected throughout this section. The momenta n, ℓ7 and ℓ8 are

defined [10] to satisfy the conditions

K1 · n = K1 · ℓ7 = K1 · ℓ8 = 0, n2 = ℓ7 · ℓ8 = −K2
1 , ℓ2

7 = ℓ2
8 = 0.

Applying the single cut operator ∆̄D0
and using (3.7), we get

0 =

[

− (a(0) + α1) Kµ
1 +

(

b̃11(01) − α3

)

ℓµ
7

+
(

b̃21(01) − α4

)

ℓµ
8 +

(

b̃0(01) − α2

)

nµ

]

qµ

K1 · q
∆D0

[

1

D0

]

. (4.3)

Here αi=1,··· ,4 are the coordinates of R1 in the basis {K1, n, ℓ7, ℓ8}. Explicitly, they read as

follows:

α1 =
R1 · K1

K2
1

, α2 = −R1 · n
K2

1

, α3 = −R1 · ℓ8

K2
1

, α4 = −R1 · ℓ7

K2
1

. (4.4)
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From the relation (4.3) we see our first example of a system of equations leading to

the tadpole coefficient. Since q can be chosen arbitrarily, the expression inside the square

brackets vanishes. This implies that each of the factors multiplying the basis vectors

vanishes separately, giving four equations.

In fact, we only need the first of these equations to get the tadpole coefficient; here we

do not need to solve for any of the spurious coefficients. The result is

a(0) + α1 = 0 =⇒ a(0) = −R1 · K1

K2
1

. (4.5)

This value is in accordance with the one obtained using the Passarino-Veltman decompo-

sition.

Tadpole coefficient of I2,2

For I2,2, again we use the OPP expansion, keeping only the terms with a non-vanishing

single cut of D0. These are the tadpole along with spurious terms,

I2,2 =
a(0)

D0
+ b̃11(01)

2k · ℓ7

D0D1
+ b̃21(01)

2k · ℓ8

D0D1
+ b̃0(01)

2k · n
D0D1

+ b̃12(01)
(2k · ℓ7)

2

D0D1
+ b̃22(01)

(2k · ℓ8)
2

D0D1
+ b̃01(01)

(2k · ℓ7)(2k · n)

D0D1

+ b̃02(01)
(2k ·ℓ8)(2k ·n)

D0D1
+ b̃00(01)

[

(2k ·n)2

D0D1
− (2k ·K1)

2 − 4k2K2
1

3D0D1

]

+ · · · . (4.6)

We compute the single cut of both sides of (4.6) using (3.7) and (3.10). The outcome is

0 =

[

−
(

a(0)

f1
+ α1 +

b̃00(01)

3

)

Kµ
1 Kν

1 +
(

b̃00(01) − α2

)

nµnν +
(

b̃12(01) − α3

)

ℓµ
7 ℓν

7

+
(

b̃22(01) − α4

)

ℓµ
8 ℓν

8 +

(

b̃0(01)

f1
− 2α5

)

Kµ
1 nν +

(

b̃11(01)

f1
− 2α7

)

Kµ
1 ℓν

7

+

(

b̃21(01)

f1
− 2α8

)

Kµ
1 ℓν

8 +
(

b̃01(01) − 2α13

)

nµℓν
7

+
(

b̃02(01) − 2α14

)

nµℓν
8

]

∆D0

[

1

D0

]

qµqν

(K1 · q)2
f1. (4.7)

Here f1 is defined according to equation (2.12), while αi=1,...,16 are obtained from the

following decomposition of Rµ
1Rν

2 in a basis of independent tensors:

Rµ
1Rν

2 = α1K
µ
1 Kν

1 + α2n
µnν +

8
∑

i=7

[αi−4ℓ
µ
i ℓν

i ] + α5(K
µ
1 nν + Kν

1 nµ) + α6(K
µ
1 nν − Kν

1 nµ)

+

8
∑

i=7

[αi(K
µ
1 ℓν

i + Kν
1 ℓµ

i ) + αi+2(K
µ
1 ℓν

i − Kν
1 ℓµ

i )] + α11(ℓ
µ
7ℓν

8 − ℓν
7ℓ

µ
8 ) + α12gµν

+

8
∑

i=7

[αi+6(n
µℓν

i + nνℓµ
i ) + αi+8(n

µℓν
i − nνℓµ

i )] . (4.8)
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The condition (4.7) is fullfilled for any lightlike q only if the second rank tensor inside the

square brackets vanishes. The first independent tensor includes the tadpole coefficient, but

also the spurious coefficient b̃00(01). So we need the second independent tensor as well, but

no others. In particular,







a(0)

f1
+ α1 +

b̃00(01)

3
= 0

b̃00(01) − α2 = 0

=⇒ a(0) = −f1

(

α1 +
α2

3

)

. (4.9)

Using the explicit expression of α1 and α2,

α1 =
3(K1 · R1)(K1 · R2)

2(K2
1 )2

− (R1 · R2)

2K2
1

− (n · R1)(n · R2)

2(K2
1 )2

,

α2 = −(K1 · R1)(K1 · R2)

2(K2
1 )2

+
(R1 · R2)

2K2
1

+
3(n · R1)(n · R2)

2(K2
1 )2

,

we get the value of the tadpole coefficient,

a(0) =
f1

3(K2
1 )2

(

K2
1 (R1 · R2) − 4(K1 · R1)(K1 · R2)

)

. (4.10)

Tadpole coefficient of I3,2

We now find it convenient to vary the OPP decomposition slightly. Our single-cut decom-

position of I3,2 reads as follows,

I3,2 =
a(0)

D0
+

2
∑

i=1

c̃i2(012)
(2k · ℓi+2)

2

D0D1D2
+

2
∑

j=1

2
∑

i=1

b̃i1(0j)
2k · ℓi+2

D0Dj

+
2
∑

i=1

b̃0(0i)

(

2k · K3−i

D0Di
− K1 · K2

K2
i

2k · Ki

D0Di

)

+ · · · . (4.11)

As in OPP, ℓ3 and ℓ4 are lightlike momenta such that

ℓ2
j = Ki · ℓj = 0, ∀ i ∈ {1, 2}, j ∈ {3, 4}. (4.12)

The evaluation of the single cut is performed using equations (3.7), (3.10) and (3.14). The

result can be written as follows,

0 =

[

2
∑

i=1

(

c̃i2(012) − γ0
i+2i+2

)

ℓµ
i+2ℓ

ν
i+2 −

(

b̃11(01) + 2γ+
23

)

Kµ
2 ℓν

3 −
(

b̃11(02) + 2γ+
13

)

Kµ
1 ℓν

3

−
(

b̃21(01) + 2γ+
24

)

Kµ
2 ℓν

4 −
(

b̃21(02) + 2γ+
14

)

Kµ
1 ℓν

4 −
(

b̃0(02) + γ0
11

)

Kµ
1 Kν

1

−
(

b̃0(01) + γ0
22

)

Kµ
2 Kν

2 +

(

a(0) − 2γ+
12 + b̃(01)

K1 · K2

K2
1

+ b̃(02)
K1 · K2

K2
2

)

Kµ
1 Kν

2

]

× ∆D0

[

1

D0

]

qµqν

(K1 · q)(K2 · q)
. (4.13)
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The coefficients γ···
ij are obtained from the decomposition of Rµ

1Rν
2 in a basis of independent

tensors,

Rµ
1Rν

2 = γ00gµν +

2
∑

i=1

[

γ0
iiK

µ
i Kν

i + γ0
i+2i+2ℓ

µ
i+2ℓ

ν
i+2

]

+ γ+
12(K

µ
1 Kν

2 + Kν
1 Kµ

2 )

+
2
∑

i=1

4
∑

j=3

[

γ+
ij (K

µ
i ℓν

j + Kν
i ℓµ

j ) + γ−
ij (K

µ
i ℓν

j − Kν
i ℓµ

j )
]

+ γ−
34(ℓ

µ
3 ℓν

4 − ℓν
3ℓ

µ
4 ) + γ−

12(K
µ
1 Kν

2 − Kν
1 Kµ

2 ). (4.14)

Eq (4.13) implies that the following conditions have to be fulfilled,















b̃0(01) + γ0
22 = 0,

a(0) − 2γ+
12 + b̃0(01)

K1 · K2

K2
1

+ b̃0(02)
K1 · K2

K2
2

= 0,

b̃0(02) + γ0
11 = 0.

(4.15)

The system (4.15) together with the explicit expressions of γ0
11, γ0

22 and γ+
12, gives the

tadpole coefficient of I3,2,

a(0) = 2γ+
12 + γ0

22

K1 · K2

K2
1

+ γ0
11

K1 · K2

K2
2

=

∑2
i,j=1 bij(Ki · R1)(Kj · R2)

K2
1K2

2

(

(K1 · K2)2 − K2
1K2

2

) .

The factors bij appearing in (4.16) are defined as follows,

b12 = b21 = −K2
1K2

2 , b11 = K2
2 (K1 · K2), b22 = K2

1 (K1 · K2).

The decomposition (4.11) relies on the particular structure of the numerator of I3,2.

Being more general, the OPP decomposition does not take advantage of the knowledge of

the numerator of I3,2. As a consequence, new spurious terms enter. They are of the type

(2k · P )(2k · Q)

D0Di
,

2k · P
D0

, (4.16)

with P,Q ∈ {K1,K2, ℓ3, ℓ4} and i = 1, 2. The coefficients of the terms (4.16) vanish.

This can be explicitly shown using the operator ∆̃D0
defined in (2.24), which selects the

Λ4t4-enhanced terms of the single cut of I3,2.

Tadpole coefficient of I3,3

This is the last example of a tadpole coefficient that we will describe. We have done the

analogous calculation for I4,3, but it does not introduce any notable new features.

Here again, although we could have started with the full OPP expansion or other vari-

ations, we can simplify the calculation by the particular expansion of I3,3 in the following
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tensor integrands:

I3,3 =
a(0)

D0
+

4
∑

i=3

c̃iii
(2k · ℓi)

3

D0D1D2
+

4
∑

i=3

2
∑

j=1

c̃iij
(2k · ℓi)(2k · ℓi)(2k · Kj)

D0D1D2

+
4
∑

i=3

2
∑

j=1

2
∑

k=j

c̃ijk
(2k · ℓi)(2k · Kj)(2k · Kk)

D0D1D2

−
2
∑

i,j=1

c̃iij

(

fj

[

(2k · Ki)

D0D3−i

]

sp.

+

[

(2k · Ki)
2

D0D3−i

]

sp.

δij

)

+ · · · . (4.17)

Here we are using the definition of ℓ3 and ℓ4 given in (4.12). The operator [· · · ]sp. selects

the spurious parts of its argument. The explicit expressions of the spurious part can be

read from equations (4.2) and (4.6). The single cut of both sides of equation (4.17) is

computed using (3.7), (3.10), and (3.15). Using the decomposition of Rµ
1Rν

2Rσ
3 in a basis

of independent tensors,

Rµ
1Rν

2Rσ
3 =

2
∑

i,j,k=1

αijkK
µ
i Kν

j Kσ
k +

4
∑

i=3

αiiiℓ
µ
i ℓν

i ℓ
σ
i +

4
∑

i=3

(

α+
i00ℓ

µ
i gνσ + α+

00iℓ
σ
i gµν

+ α−
i00ℓ

µ
i (ℓν

3ℓ
σ
4 − ℓν

4ℓ
σ
3 )
)

+
2
∑

i=1

(

α+
i00K

µ
i gνσ + α+

0i0K
ν
i gµσ + α+

00iK
σ
i gµν

)

+

2
∑

i=1

(

α−
i00K

µ
i (ℓν

3ℓ
σ
4 − ℓν

4ℓ
σ
3 ) + α−

0i0K
ν
i (ℓµ

3 ℓσ
4 − ℓµ

4ℓσ
3 ) + α−

00iK
σ
i (ℓµ

3 ℓν
4 − ℓµ

4ℓν
3)
)

+

2
∑

i,j=1

4
∑

k=3

(

αijkK
µ
i Kν

j ℓσ
k + αikjK

µ
i Kσ

j ℓν
k + αkijK

ν
i Kσ

j ℓµ
k

)

+

2
∑

i=1

4
∑

j=3

(

αijjK
µ
i ℓν

j ℓ
σ
j + αjijK

ν
i ℓσ

j ℓµ
j + αjjiK

σ
i ℓν

j ℓ
µ
j

)

, (4.18)

and equating the single cuts on both sides of equation (4.17), we get the following relation:

0 =

2
∑

m=1

{[

4
∑

i=3

ĉiii ℓµ
i ℓν

i ℓ
σ
i +

4
∑

i=3

2
∑

j=1

2
∑

k=j

ĉijk ℓµ
i Kν

j Kσ
k +

4
∑

i=3

2
∑

k=1

ĉiikℓ
µ
i ℓν

i K
σ
k

+

2
∑

i=1

gii; m(ĉ)Kµ
i Kν

i Kσ
i + g3−m m; m(ĉ)Kµ

3−mKν
3−mKσ

m

+
1

2fm
Kµ

mKν
mKσ

3−m

(

a(0) −
2
∑

i,j,k=1

αijkdijk

+2fm gm 3−m; m(ĉ)

)]

∆D0

[

1

D0

]

qµqνqσ fm

(K1 · q)(K2 · q)(Km · q)

}

. (4.19)
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The coefficients in the above relation have been defined for convenience of displaying the

independent tensors. We use the following abbreviations (i 6= j 6= k 6= i),

ĉiii = c̃iii − αiii

ĉiik = c̃iik − (αkii + αiki + αiik)

ĉijk = c̃ijk − [αkji + αkij + αikj + (1 − δjk)(αjki + αjik + αijk)] , (4.20)

and the following definition of the totally symmetric coefficient dijk,

diii = fi
Ki · K3−i

K2
3−i

− f3−i

3

(

K2
i

K2
3−i

− 4
(K3−i · Ki)

2

(K2
3−i)

2

)

, diij = fi + fj
Ki · Kj

K2
j

. (4.21)

The gij; m(ĉ) are given by

gij; m(ĉ) = δij ĉiii + (1 − δij)

{

δmj ĉiij − δmi

[

K1 · K2

K2
j

ĉiii

− 1

3(K2
i )2

(

K2
1K2

2 − 4(K1 · K2)
2
)

ĉjjj +
K1 · K2

K2
i

ĉjji

]}

. (4.22)

Since q is arbitrary, we are led to the following relations.











































g11; 2(ĉ) = 0

g22; 1(ĉ) = 0

f1 g11; 1(ĉ) + f2 g12; 2(ĉ) = 0

f1 g21; 1(ĉ) + f2 g22; 2(ĉ) = 0

a(0) −
2
∑

i,j,k=1

αijkdijk + f1 g12; 1(ĉ) + f2 g21; 2(ĉ) = 0

, (4.23)

which uniquely fix a(0),

a(0) =
2
∑

i,j,k=1

αijkdijk. (4.24)

We have observed that a different choice of the original integrand expansion, rather

than (4.17), can lead to a larger linear system which is not completely solvable, yet there

is still a unique solution for a(0). The underlying phenomenon is that different spurious

terms can have the same single cut, so these terms should really be grouped together in

the expansion.

5 Massless external legs

As in other techniques such as Passarino-Veltman [21–25, 29, 30, 35, 58, 59] or Ossola-

Papadopoulos-Pittau [10, 50], we must modify our algorithm in the case of vanishing Gram

determinants. The most immediate case is the presence of a massless external leg in tensor

bubble integrals. In this section we will focus on this class of integrals in the case where

the internal masses are the same, m2
0 = m2

1 = m2.
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New features appear in the computation of atot, the coefficient of A0(m
2). First of all,

if K1 is light-like, it is not possible to complete a basis defining n, ℓ7, ℓ8. A suitable basis

is given by {K1,K2, ℓ7, ℓ8}, which is composed of four light-like momenta such that

K1 · K2 6= 0 6= ℓ7 · ℓ8, Ki · ℓj = 0, ∀ i ∈ {1, 2}, j ∈ {7, 8}. (5.1)

Secondly, the coefficients of 1/D0 and 1/D1 contribute to atot since
∫

d4k
1

D0
=

∫

d4k
1

D1
= A0(m

2). (5.2)

Moreover the scalar bubble and the tadpole are connected,

B0(0,m
2,m2) =

A0(m
2)

m2
− 1, (5.3)

so the bubble coefficient contributes to the total tadpole coefficient. Tensor integrals con-

tracted with K2 are no longer spurious terms [50] and they contribute to the total tadpole

coefficient. This can be easily understood looking at their explicit expression [35],
∫

d4k
(2k · K2)

D0D1
= B1(0,m

2,m2)(2K2 · K1) =
1

2

(

A0(m
2)

m2
− 1

)

(2K2 · K1),

∫

d4k
(2k · K2)

2

D0D1
= B11(0,m

2,m2)(2K2 · K1)
2 =

1

3

(

A0(m
2)

m2
− 1

)

(2K2 · K1)
2. (5.4)

The tadpole coefficient atot is obtained by summing the aforementioned contributions.

These contributions can be obtained by applying the single cut operators defined in (2.23),

(2.24), and (2.25).

Tadpole coefficient of I2,1

The full integrand is expanded as

I2,1 =
a(0)

D0
+

a(1)

D1
+

b

D0D1
+ b̂0(01)

(2k · K2)

D0D1
+

2
∑

i=1

b̃i1(01)
(2k · ℓi+6)

D0D1
+ · · · . (5.5)

The terms denoted by “· · · ” are those such that ∆̄m2 [· · · ] = ∆̄D0
[· · · ] = ∆̂D0

[· · · ] = 0. The

tadpole coefficient is given by

atot = a(0) + a(1) +
b

m2
+

b̂0(01)

2m2
(2K2 · K1). (5.6)

The sum a(0) + a(1) can be obtained by applying ∆̄m2 . Using equation (3.9) we see that

only the tadpole terms survive, so

a(0) + a(1) = 0. (5.7)

The coefficient b̂0(01) is obtained by cutting the propagator D0 and selecting the Λ2t terms.

The outcome is

0 =

[

− (a(0) + α1)K
µ
1 + (b̂0(01) − α2)K

µ
2

+

2
∑

i=1

(

b̃i1(01) − αi+2

)

ℓµ
i+6

]

qµ

K1 · q
∆D0

[

1

D0

]

. (5.8)
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The parameters α1,··· ,4 are the coordinates of R1 in the basis {K1,K2, ℓ7, ℓ8}, which read

as follows:

α1 =
R1 · K2

K1 · K2
, α2 =

R1 · K1

K1 · K2
, α3 =

R1 · ℓ8

ℓ7 · ℓ8
, α4 =

R1 · ℓ7

ℓ7 · ℓ8
. (5.9)

Since q is arbitrary, each coefficient of the momenta appearing in (5.8) has to vanish. In

particular,

b̂0(01) = α2 =
R1 · K1

K1 · K2
, (5.10)

and b̃i1(01) = αi+2. Finally, the bubble coefficient b can be obtained by using the operator

∆̂D0
defined in (2.24). Using equation (3.8), we get

0 =
∑

a

∫

dt ca(t)va µ

[

− α1K
µ
1 + (b̂0(01) − α2)K

µ
2 +

2
∑

i=1

(

b̃i1(01) − αi+2

)

ℓµ
i+6

]

+b ∆D0

[

1

D0D1

]

= −α1

∑

a

∫

dt ca(t) (va · K1) + b ∆D0

[

1

D0D1

]

= b ∆D0

[

1

D0D1

]

=⇒ b = 0. (5.11)

The tadpole coefficient is obtained from equation (5.6), using the results (5.7), (5.10),

and (5.11), and it is given by

atot =
(R1 · K1)

m2
, (5.12)

as expected from explicit reduction.

Tadpole coefficient of I2,2

Our final example is given to display the flexibility of single cut operations and the degrees

of information available from cutting the same propagator. We use several different refine-

ments of the single cut, picking out terms with different dependence on Λ and t, in order

to collect the subset of the information required for the tadpole coefficient.

The integrand I2,2 is decomposed as follows,

I2,2 =
a(0)

D0
+

a(1)

D1
+

b

D0D1
+

2
∑

i=1

(

ãi(0)
2k · Ki

D0
+ ãi+2(0)

2k · ℓi+6

D0

)

+

2
∑

i=1

(

b̃0i(01)
(2k · K2)(2k · ℓi+6)

D0D1
+ b̃i2(01)

(2k · ℓi+6)
2

D0D1

)

+ b̂00(01)
(2k · K2)

2

D0D1
+ · · · . (5.13)

The terms denoted by “· · · ” are not explicitly shown since ∆̄m2 [· · ·]=∆̃D0
[· · ·]=∆̂D0

[· · ·]=0.

The tadpole coefficient of A0(m
2) is given by

atot = a(0) + a(1) +
b

m2
+

b̂00(01)

3m2
(2K2 · K1)

2. (5.14)
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In the computation we will take advantage of the following decomposition of Rµ
1Rν

2 in

independent tensors,

Rµ
1Rν

2 =

2
∑

i=1

αiK
µ
i Kν

i +

8
∑

i=7

[αi−4ℓ
µ
i ℓν

i ] + α5(K
µ
1 Kν

2 + Kν
1 Kµ

2 ) + α6(K
µ
1 Kν

2 − Kν
1 Kµ

2 )

+

8
∑

i=7

[αi(K
µ
1 ℓν

i + Kν
1 ℓµ

i ) + αi+2(K
µ
1 ℓν

i − Kν
1 ℓµ

i )] + α11(ℓ
µ
7ℓν

8 − ℓν
7ℓ

µ
8 )

+ α12gµν +
8
∑

i=7

[αi+6(K
µ
2 ℓν

i + Kν
2 ℓµ

i ) + αi+8(K
µ
2 ℓν

i − Kν
2 ℓµ

i )] . (5.15)

We apply the single cut and we select the Λ2t terms using the operator ∆̄m2 and equa-

tion (3.12).

0 =

[

(

a(0) + a(1) − 4α12

2K1 · K2
− 2α5

)

Kµ
1 + 2(b̂00(01) − α2)K

µ
2

+
2
∑

i=1

(b̃0i(01) − 2αi+12)ℓ
µ
i+6

]

2(K1 · K2)qν

K1 · q
∆D0

[

1

D0

]

. (5.16)

Equation (5.16) fixes the values of a(0) + a(1) and of b̂00(01) to be

a(0) + a(1) = 4α12 + 2α5(2K1 · K2), (5.17)

b̂00(01) = α2. (5.18)

The value of b̃0i(01) is fixed as well, to be

b̃0i(01) = 2αi+12. (5.19)

The value of b̃i2(01) is read off from the Λ4t4-enhanced terms of the single cut of I2,2.

These terms are selected using the operator ∆̃D0
and using equations (3.6) and (3.11).

The outcome can be written as follows,

0 =

[

− (ã1(0) + α1)K
µ
1 Kµ

1 − (ã2(0) + 2α5)K
µ
1 Kµ

2 −
4
∑

i=3

(ãi(0) + 2αi+4)K
µ
1 ℓν

i+4

+
2
∑

i=1

(b̃0i(01) − 2αi+12)K
µ
2 ℓν

i+6 +
2
∑

i=1

(b̃i2(01) − αi+2)ℓ
µ
i+6ℓ

ν
i+6

+ (b̂00(01) − α2)K
µ
2 Kµ

2

]

2qµqν

K1 · q
πK2Λ4t2

=⇒ b̃i2(01) = αi+2. (5.20)

The logarithmically enhanced part of the single cut allows the computation of the bubble

coefficient b. This is achieved by applying the ∆̂D0
operator defined in (2.24). Using

equations (5.19) and (5.20), we find

0 = b ∆D0

[

1

D0D1

]

− 4α12m
2∆D0

[

1

D0D1

]

=⇒ b = 4m2α12. (5.21)
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Here we have used the property ∆̂D0
I2,2(K1, A2;D0,D1) = 0, which holds in the case f1 =

0. The tadpole coefficient in Equation (5.14) is then obtained using equations (5.17), (5.18)

and (5.21),

atot = 2 (4α12 + α5(2K1 · K2))+α2
(2K2 · K1)

2

3m2
= 2R1 ·R2 +

(2R1 · K1)(2R2 · K1)

3m2
. (5.22)

In obtaining the result (5.22), we used some explicit values of the coefficients in the expan-

sion (5.15),

4α12 + α5(2K1 · K2) = (R1 · R2), α2 =
(R1 · K1)(R2 · K1)

(K1 · K2)2
. (5.23)

6 Conclusions and discussion

We have seen how single cut integrals can distinguish scalar boxes, triangles, bubbles and

especially tadpoles. We have outlined a strategy to find the tadpole coefficients applying

single cuts. In particular we have used the fact that the null vector q was chosen arbitrarily

in order to establish the independence of contractions with it and derive a system of linear

equations. The tadpole coefficient may been obtained as a solution of this system.

The general application of our procedure requires further investigation. Since single

cuts of spurious terms do not vanish, we need to understand the single cuts of general

integrands in order to isolate tadpole coefficients. We have made a start in this direction in

section 3. It would be very interesting to generalize this analysis. The simple expressions

of the terms proportional to Λ2t lead us to speculate that further results will be similarly

simple. Perhaps there is even a more direct way to derive these terms in particular.

Although in the examples in section 4, the system of equations derived from single

cuts was sufficient to uniquely determine the tadpole coefficient, we need more general

information about the system to be sure that it will always work. The rank of the matrix

associated to the system of linear equation could be insufficient to find a unique solution

for the tadpole coefficient. A possible concern is that q is null and thus has fewer degrees

of freedom than a generic vector. Here again, study of single cuts of general integrands

could illuminate the role played by q and perhaps resolve our concern about the general

solvability of the linear system.

In Passarino-Veltman reduction, a single system of equations is solved for all coefficients

of master integrals, and no spurious terms are involved. It is also unnecessary to reduce all

the way to the tadpole level. In our procedure, by contrast, we actually solve two systems

of equations: the first one is the expansion of the tensor numerator in a suitable basis of

independent tensors. However, the second system leading to the tadpole coefficient is then

quite simple and usually reducible. We have assumed that the coefficients of other master

integrals would be obtained by (generalized) unitarity methods, so the total calculation

is in fact quite long. We cannot claim that our method for getting tadpole coefficients

will be efficient. Nevertheless, we have found it illuminating to investigate the single cut

integral formalism in general. It would be very interesting to further probe the analytic

structure of amplitudes, for example by developing a D-dimensional extension for studying

their rational parts along the lines of [17].
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A Phase space parametrization

In this appendix we describe some details of the evaluation of the single cut. The starting

point is the integral
∫

R4

d4ℓ1δ
+(ℓ2

1) g, (A.1)

where g is a general integrand. Given an arbitrary four-vector K, such that K2 6= 0 and

its energy component is positive, K0 > 0, we construct a pair of light-like momenta p and

q such that p + q = K, and two more momenta ǫ1, ǫ2 defined as

ǫ1 =
1

2

(

〈q|γµ|p] + 〈p|γµ|q]
)

, ǫ2 =
1

2i

(

〈q|γµ|p] − 〈p|γµ|q]
)

.

The loop momentum ℓ1 can be decomposed in the basis {p, q, ǫ1, ǫ2},

ℓ1 = t(p + αq + ǫ1x − ǫ2y),

and the integral (A.1) can be expressed in terms of the coordinates (t, α, x, y). The Jacobian

of this reparametrization reads as follows:

J =
∣

∣−t3εµνρσpµqνǫρ
1ǫ

σ
2

∣

∣ =
2(K2)2

4

∣

∣t3
∣

∣ ,

where in the last step the relation

4i εµνρσaµbνcρdσ = −2〈a|b c d|a] + (2a · b)(2c · d) − (2a · c)(2b · d) + (2a · d)(2b · c),

has been used [60]. The integral (A.1) becomes
∫

d4ℓ1δ
+(ℓ2

1) g =

∫

dt dx dy dαJ δ+
(

t2 (α − x2 − y2)
)

g

=

∫ ∞

0
dt

∫

R2

dx dy
K2 t

2
g. (A.2)

This integral is computed using the generalized Cauchy formula,

2πi
∑

poles zj

Res{F (z, z̄), zj} =

∮

∂S

F (z, z̄)dz −
∫

S

∂F

∂z̄
dz̄ ∧ dz. (A.3)

Considering g as a function of (z, z̄) = (x + iy, x − iy), we construct its primitive G(z, z̄)

with respect to z̄. Choosing S to be the complex plane C, we get
∫

R2

dx dy g =
1

2i

∫

C

∂G

∂z̄
dz̄ ∧ dz =

1

2i

∫

∂C

G(z, z̄)dz − π
∑

poles zj

Res{G(z, z̄), zj}. (A.4)
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In practice we regularize the divergences of the integral (A.4) taking instead of C a disk

D in the complex plane enclosing all poles of G(z, z̄) viewed as a function of z. In polar

coordinates the disk is parametrized as follows,

z = reiα; D = {(r, α) | 0 ≤ r ≤ Λ, 0 ≤ α < 2π}.
Under these assumptions, equation (A.4) becomes

∫

R2

dx dy g = lim
Λ→∞

1

2

∫ 2π

0
ΛeiαG

(

Λeiα,Λe−iα
)

dα − π
∑

poles zj

Res{G(z, z̄), zj}. (A.5)

In equations (A.2) and (A.4) the correct prefactors are kept, even though in unitarity

methods these constant factors cancel out and can be neglected.2
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