554 research outputs found

    The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    Get PDF
    BACKGROUND: Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. METHODOLOGY/PRINCIPAL FINDINGS: We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. CONCLUSIONS/SIGNIFICANCE: Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation

    Model-Independent Bounds on a Light Higgs

    Get PDF
    We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constructed a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative operators in the effective Lagrangian, references adde

    Effect of Community of Residence on Neurobehavioral Development in Infants and Young Children in a Flower-Growing Region of Ecuador

    Get PDF
    OBJECTIVE: In this study we compared neurobehavioral development in Ecuadoran children living in two communities with high potential for exposure to organophosphate (OP) and carbamate pesticides to that of children living in a community with low potential for exposure. METHODS: Women residing in the study communities who had a child 3–61 months of age completed a questionnaire about maternal and child health and sociodemographic characteristics. The Ages and Stages Questionnaire (ASQ) was administered to each child (n = 283). Growth measurements and a hemoglobin finger-prick blood test were obtained. We used multiple linear regressions to evaluate associations between community of residence and delayed development, adjusting for child health status and other characteristics of the home environment. RESULTS: Children 3–23 months of age who resided in high-exposure communities scored lower on gross motor (p = 0.002), fine motor (p = 0.06), and socioindividual (p-value = 0.02) skills, compared with children in the low-exposure community. The effect of residence in a high-exposure community on gross motor skill development was greater for stunted children compared with non-stunted children (p = < 0.001) in the same age group of 3–23 months. Children 24–61 months of age residing in the high-exposure communities scored significantly lower on gross motor skills compared with children of similar ages residing in the low-exposure community (p = 0.06). CONCLUSIONS: Residence in communities with high potential for exposure to OP and carbamate pesticides was associated with poorer neurobehavioral development of the child even after controlling for major determinants of delayed development. Malnourished populations may be particularly vulnerable to neurobehavioral effects of pesticide exposure

    Thermal phases of D1-branes on a circle from lattice super Yang-Mills

    Get PDF
    We report on the results of numerical simulations of 1+1 dimensional SU(N) Yang-Mills theory with maximal supersymmetry at finite temperature and compactified on a circle. For large N this system is thought to provide a dual description of the decoupling limit of N coincident D1-branes on a circle. It has been proposed that at large N there is a phase transition at strong coupling related to the Gregory-Laflamme (GL) phase transition in the holographic gravity dual. In a high temperature limit there was argued to be a deconfinement transition associated to the spatial Polyakov loop, and it has been proposed that this is the continuation of the strong coupling GL transition. Investigating the theory on the lattice for SU(3) and SU(4) and studying the time and space Polyakov loops we find evidence supporting this. In particular at strong coupling we see the transition has the parametric dependence on coupling predicted by gravity. We estimate the GL phase transition temperature from the lattice data which, interestingly, is not yet known directly in the gravity dual. Fine tuning in the lattice theory is avoided by the use of a lattice action with exact supersymmetry.Comment: 21 pages, 8 figures. v2: References added, two figures were modified for clarity. v3: Normalisation of lattice coupling corrected by factor of two resulting in change of estimate for c_cri

    Limit Cycles in Four Dimensions

    Full text link
    We present an example of a limit cycle, i.e., a recurrent flow-line of the beta-function vector field, in a unitary four-dimensional gauge theory. We thus prove that beta functions of four-dimensional gauge theories do not produce gradient flows. The limit cycle is established in perturbation theory with a three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our result. Improved description of three-loop calculatio

    N=1 SQCD-like theories with N_f massive flavors from AdS/CFT and beta functions

    Get PDF
    We study new supergravity solutions related to large-NcN_c N=1{\cal N}=1 supersymmetric gauge field theories with a large number NfN_f of massive flavors. We use a recently proposed framework based on configurations with NcN_c color D5 branes and a distribution of NfN_f flavor D5 branes, governed by a function NfS(r)N_f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of xNf/Ncx\equiv N_f/N_c. In the IR region, the solution smoothly approaches the deformed Maldacena-N\'u\~nez solution. In the UV region it approaches a linear dilaton solution. For x<2x<2 the gauge coupling βg\beta_g function computed holographically is negative definite, in the UV approaching the NSVZ β\beta function with anomalous dimension γ0=1/2\gamma_0= -1/2 (approaching 3/(32π2)(2NcNf)g3-3/(32\pi^2)(2N_c-N_f)g^3)), and with βg\beta_g \to-\infty in the IR. For x=2x=2, βg\beta_g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x>2x>2 describe a "Seiberg dual" picture where Nf2NcN_f-2N_c flips sign.Comment: 18 pages, 10 figure

    Collective Quartics from Simple Groups

    Get PDF
    This article classifies Little Higgs models that have collective quartic couplings. There are two classes of collective quartics: Special Cosets and Special Quartics. After taking into account dangerous singlets, the smallest Special Coset models are SU(5)/SO(5) and SU(6)/Sp(6). The smallest Special Quartic model is SU(5)/SU(3) x SU(2) x U(1) and has not previously been considered as a candidate Little Higgs model.Comment: 22 pages, 2 figure

    Anomalous Couplings in Double Higgs Production

    Full text link
    The process of gluon-initiated double Higgs production is sensitive to non-linear interactions of the Higgs boson. In the context of the Standard Model, studies of this process focused on the extraction of the Higgs trilinear coupling. In a general parametrization of New Physics effects, however, an even more interesting interaction that can be tested through this channel is the (ttbar hh) coupling. This interaction vanishes in the Standard Model and is a genuine signature of theories in which the Higgs boson emerges from a strongly-interacting sector. In this paper we perform a model-independent estimate of the LHC potential to detect anomalous Higgs couplings in gluon-fusion double Higgs production. We find that while the sensitivity to the trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include experimental uncertainty on the Higgs couplings, references adde

    Minimal Conformal Technicolor and Precision Electroweak Tests

    Get PDF
    We study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) -> Sp(4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. The top quark is elementary, and the top and electroweak gauge loop contributions to the Higgs mass are cut off entirely by Higgs compositeness. In particular, the model requires no top partners and no "little Higgs" mechanism. A nontrivial vacuum alignment results from the interplay of the top loop and technifermion mass terms. The composite Higgs mass is completely determined by the top loop, in the sense that m_h/m_t is independent of the vacuum alignment and is computable by a strong-coupling calculation. There is an additional composite pseudoscalar A with mass larger than m_h and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. Corrections to Z -> bb and the T parameter from the top sector are suppressed by the enhanced Sp(4) custodial symmetry. Even assuming that the strong contribution to the S parameter is positive and usuppressed, a good electroweak fit can be obtained for v/f ~ 0.25, where v and f are the electroweak and chiral symmetry breaking scales respectively. This requires fine tuning at the 10% level.Comment: 34 pages, 4 figures; v2: updated precision electroweak fi
    corecore