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1 Introduction

Little Higgs (LH) models are a leading candidate for extensions to the Standard Model.
The primary advance of Little Higgs models [1–8] over older models where the Higgs is a
Goldstone boson [9–14] is the existence of an operator that gives a quartic coupling, but no
mass term. The origin of the independent quartic coupling arises from collective symmetry
breaking — where two separate symmetries treat the Higgs as a Goldstone boson. If either
of these symmetries is exact, then the Higgs is a massless Goldstone boson; however, when
both symmetries are broken, the Higgs can have a potential. Collective symmetry breaking
guarantees that the one loop quadratic divergences in the theory renormalize operators that
do not induce a mass for the Higgs boson. In many theories (e.g. the Littlest Higgs [15]
or a Little Higgs from an Anti-Symmetric Condensate [16]), two of the operators that had
a one loop quadratic divergence, when taken together, induced a quartic coupling for the
Higgs boson without inducing a mass at the same time. This article explains the structure
in the theory that enables these models to have operators with a quartic coupling without
a mass: “collective quartics”.

The existence of a quartic coupling independent of the mass term is critical because
without an independent quartic coupling, electroweak symmetry breaking must arise from
vacuum misalignment and frequently results in either a light Higgs boson or fine tuning [14,
17, 18].

Simple group Little Higgs models are arguably the most elegant version of Lit-
tle Higgs models. These models are cosets G/H where G is simple, e.g. the Lit-
tlest Higgs (SU(5)/SO(5)) [15], a Little Higgs from an Anti-Symmetric Condensate
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(SU(6)/Sp(6)) [16], SU(9)/SU(8) [19], and a Simple Custodially Symmetric Little Higgs
(SO(9)/SO(5)× SO(4)) [20]. Additionally, there is the Intermediate Higgs (SU(4)/Sp(4))
which is not a proper Little Higgs model but can soften the top quadratic divergence [21].

Recently, Schmaltz and Thaler showed that the existence of a radiatively stable col-
lective quartic coupling places restrictions on the scalar field content of the cosets [22].
Specifically, they found that uncharged singlets that participate in the collective quar-
tics have tadpoles that reintroduce quadratic divergences to the Higgs mass. Schmaltz
and Thaler left open the question of the smallest coset with a collective quartic and no
dangerous tadpole.

This article classifies the existence of collective quartics without dangerous tadpoles
from simple Little Higgs or simple Intermediate Higgs models that satisfy the following
criteria. The Little Higgs coset arises from the spontaneous breaking of G to H. In this
article, G is a simple group. In the breaking from G to H, the electroweak gauge symmetry
is not broken. Electroweak generators need to be embedded inside of H. The Higgs arises
as a pseudo-Goldstone boson (PGB) from this breaking. Little Higgs models frequently
have an extended electroweak gauge sector that is broken when G is broken to H; however,
the analysis presented in this article does not require specifying the gauge symmetry. At
the cost of reintroducing the gauge quadratic divergences to the Higgs mass (but still
softening the top’s quadratic divergence), the TeV gauge symmetry can be the electroweak
gauge group, as in the Intermediate Higgs. This article will present a new model along
the lines of the Intermediate Higgs that softens the quadratic divergences of the top and
Higgs sector and has a radiatively safe quartic coupling without dangerous tadpoles. The
smallest possible model with a collective quartic is found to be SU(5)/SU(3)×SU(2)×U(1)
with 12 Goldstone bosons.

1.1 Collective quartics

The existence of a collective quartic coupling places restrictions upon the possible groups
because it is generated from a potential of the form

V (Σ) = λ1f
4 Tr P1ΣP(′)

1Σ† + λ2f
4 Tr P2ΣP(′)

2Σ† (1.1)

where Σ is the non-linear sigma model (nlσm) field and P1 and P2 are projection operators
that preserve a subgroup of G, G1 and G2, respectively. G1 and G2 are nonlinearly realized
subgroups that shift the Higgs boson and do not commute with H. If either λ1 or λ2

vanish, then G1 or G2 becomes an exact symmetry and the Higgs boson responsible for
electroweak symmetry breaking becomes an exact Goldstone boson.

Expanding eq. (1.1) to quartic order, the structure of the potential must be of the form

V = λ1(fφ+ [hh])2 + λ2(fφ− [hh])2 + · · · (1.2)

where [hh] is a generalized product of Higgs fields, i.e. h†h, h†τah, etc. The first and second
terms in the expansion preserve

δε1h = ε1f δε1φ = −[ε1h],

δε2h = ε2f δε2φ = [ε2h]. (1.3)
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The primary challenge in constructing a collective quartic is promoting these leading order
transformations into an algebra that closes. The field φ plays a key role in collective
symmetry breaking. When a background field for h is turned on, φ acquires a source term
and for this reason, we call φ the “source field.”

The transformation properties of the source field are calculated from the product of
two Higgs doublets: φ ∼ h† ⊗ h, h⊗ h. The possible representations of SU(2)L×U(1)Y for
the source field are

φ ∼ 10,30,1±1,3±1. (1.4)

When φ is a singlet, a tadpole can be generated, destroying the stability of the potential.
Additionally, the 1±1 requires an antisymmetric product of Higgs fields, therefore one Higgs
doublet models of this type of source field are not possible. Motivated by the desire for
fewer new particles, we consider minimal LH models where minimality is defined as the
fewest number of PGB fields. Additionally we want to have a viable LH potential that
does not have quadratic divergences due to tadpoles of singlet fields. Thus the minimal
LH theory is one that contains a triplet in addition to the Higgs doublet — 7 fields total.
Some of the simplest models are

dim G/H =



7 2 1
2
⊕ 30

10 2 1
2
⊕ 31

10 2 1
2
⊕ 2 1

2
⊕ 11

10 2 1
2
,± 1

2PQ
⊕ 10,1PQ

(1.5)

This article shows that none of these models exist without additional fields. The last
example has a global U(1)PQ that the Higgs and a neutral singlet are charged under

V ' λ1|fη + h†1h2|2 + λ2|fη − h†1h2|2. (1.6)

The SU(6)/Sp(6) LH model falls under this category and the global symmetry prevents
the singlet from acquiring a dangerous tadpole. Of course, there could be additional fields
that do not participate in the LH potential.

Section 2 outlines the various mathematical constraints that collective symmetry break-
ing imposes on the groups G, H, G1 and G2. Section 3 presents all coset spaces with dimen-
sion 14 or less. After applying the constraints from section 2, the smallest possible models
with collective quartics are enumerated. The smallest model is dimension 12 and is based
on the coset SU(5)/SU(3)× SU(2)×U(1).

2 Criteria for collective quartics

This section demonstrates the necessary conditions for the Higgs, h, and the source field, φ,
to have the desired non-linearly realized symmetries needed to achieve collective symmetry
breaking.
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The total symmetry of the little Higgs model is G and the linearly realized subgroup
is H. In order to not break GEW = SU(2)L ×U(1)Y , GEW must be a subgroup of H. The
generators of G are normalized to Tr TaTb = 1

2δab. The collective symmetries that protect
the Higgs are called G1 and G2 with their respective generators TG1,2 . Xh are the generators
of the Higgs boson(s) inside of G/H and they transform as 2 1

2
under GEW.

One of the conditions required for collective symmetry breaking is that all generators
of G1,2 satisfy

0 ≤ | Tr XhTG1,2 | <
1
2
, (2.1)

where there exists at least one generator that does not trace with Xh to zero. This condition
is referred to as “partial support” of the Higgs inside the collective symmetry breaking
cosets. This condition implies that the generators of the Higgs boson are not completely
contained within either G1 or G2 and is essence of partial support.

If the generators of the Higgs boson are completely contained inside of either G1 or G2,
then the generators of the Higgs only transforms non-linearly under a single transformation

hi → hi + εif. (2.2)

When only one transformation acts on the Higgs generator, it is impossible to have two
separate operators of the form in eq. (1.2) that are guaranteed by symmetries. Partial
support allows G1 and G2 to act in distinct ways on the Higgs, creating the possibility of
collective symmetry breaking.

Partial support is closely related to the relative embeddings of H into G and of G1 and
G2 into G. This article will demonstrate that partial support is equivalent to the statement
that the embedding of H into G is a special embedding relative to the embedding of G1

and G2 into G. There are two classes of models that satisfy this criteria. The first class,
“special coset,” is defined as models where H is a special embedding of G and G1 and G2 are
regular embeddings of G. The second class, “special quartics,” is defined as models where
H is a regular embedding of G and G1 and G2 are special embeddings of G. In some cases,
the distinction between these two classifications is blurred, preventing the clean dichotomy
of collective symmetry breaking. These classifications are discussed further in section 2.3.

The remaining portion of this section proves this criteria. Section 2.1 shows how
the transformation properties constrain the relation between H, G1 and G2 and results in
the requirement of “partial support”. Section 2.2 shows how a class of quartic couplings
can is related to the structures presented in section 2.1. While the example presented in
section 2.2 is the simplest example of a collective quartic, it appears in several models,
including the Littlest Higgs and the model introduced in this article. Finally, section 2.3
relates partial support to special embeddings of subgroups.

2.1 Source fields and shift symmetries

In Little Higgs models, the Higgs is a pseudo-Goldstone boson created by breaking the
group G down to the subgroup H via a vev, Σ. The Goldstones non-linearly realize a
symmetry. In order for the Higgs to acquire a potential of the form in eq. (1.1), it is first
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Figure 1. A schematic diagram of the different decompositions of the generators of G. The left
shows the decomposition of G under G1 while the right shows the decomposition under G2. The
Higgs is in an admixture of the generators of H and the generators of G1 and G2 while the source
field, φ, falls outside of G1, G2 and H.

necessary to classify how subgroups of G act upon Σ. Little Higgs models are restricted to
the case where the Higgs and source field transform nonlinearly under two distinct groups,
G1 and G2 as shown in eq. (1.3).

The generators of G/H are broken generators and labeled by X. The generators of H
are unbroken generators, TH . Unbroken generators act on the vev of Σ and vanish

TH〈Σ〉 = 0. (2.3)

The unbroken generators of G will play an important role in elucidating the role of collective
symmetry breaking.

In LH theories, the Higgs, h, has a shift symmetry under G1 and G2 while the source
field, φ, transforms proportionally to the Higgs (see eq. (1.3)). These transformations
imply constraints on G1 and G2. Parameterizing the broken directions as π and performing
a transformation under G1 gives

eiεTG1eiπ/f 〈Σ〉 = eiπ
′/f 〈Σ〉 (2.4)

where TG1 are the generators of G1, and the equation is suitably generalized for higher
tensor representations of Σ. The Baker-Campbell-Hausdorff formula gives

π′ = π + εfTG1 +
i

2
[εTG1 , π] +O(ε2, π2). (2.5)

The Higgs shift arises from the first term in the expansion.
The relation of π′ to π is determined by expanding the generators of G into three terms:

TG1 , the generators of G1; TH , the generators of H; and XU1 , the remaining generators of
G, where

U1 = G/H ∩G/G1. (2.6)

The generators of G1 provide the shift symmetry for the Higgs boson. The generators
of G1 are an admixture of generators in H and G/H. Figure 1 and figure 2 show this
decomposition diagrammatically.

The generators of the Higgs are decomposed as

Xh = chG1T
h
G1 + chHT

h
H + chU1

Xh
U1

(2.7)
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G2

U2

H

G/H

h

φ

hG2

H G1

G/H

U1

h

hG1

φ

Figure 2. Another schematic diagram of the multidimensional space spanned by the generators
of G. The Higgs is uniquely decomposed as a sum of the non-orthogonal generators of G1, H and
U1. The generators of U1 are those for which the G/H and G/G1 axes coincide. Instead of the
projection onto the usual orthonormal basis, the Higgs is projected onto the nonorthogonal spaces
of G1 and H.

where the cs are constants with implied indices. The O(ε) transformation of the Higgs in
the T hG1 direction is

h′Xh = hXh + εfT hG1 = (hchG1 + εf)T hG1 + hchU1
Xh
U1

+ hchHT
h
H . (2.8)

At linear order, the last term vanishes when acting upon 〈Σ〉. This transformation is
interpreted as the Higgs obtaining a shift symmetry only if chG1 6= 0 and chU1

= 0.
The source field, φ, should not acquire a shift symmetry under G1. Therefore, when

decomposing φ in an analogous manner to the Higgs in eq. (2.7),

Xφ = cφG1T
φ
G1 + cφHT

φ
H + cφU1

Xφ
U1
. (2.9)

If cφG1 6= 0, then it is possible to do a transformation in that direction; however, this
symmetry transformation would prevent φ from acting as the source field in eq. (1.2).
Therefore, cφG1 = 0 and since φ cannot only live inside of H, cφU1

6= 0. Since, U1 is orthogonal
to H (see figure 2) cφH vanishes.

The desired transformation of φ is of the form

δεφ ∝ [εh]. (2.10)

The second order term in eq. (2.5) constrains the transformation properties of φ up to
unbroken generators

Xφ ∝ [T hG1 , Xh] ∝ [T hG1 , c
h
G1T

h
G1 ] + [T hG1 , c

h
HT

h
H ] ∝ Xφ

U1
(2.11)

The first term closes onto an element of G1, which is orthogonal to φ. Thus the only way
that eq. (2.11) can be nonzero is if chH 6= 0. The only consistent transformation is

[T hG1 , c
h
HT

h
H ] = chHd

U1
G1HXU1 + chHd

H
G1HTH + chHd

G1
G1HTG1

[T hG1 , c
h
G1T

h
G1 ] = chG1d

G1
G1 G1TG1 . (2.12)
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In order for this to be proportional to XU1

chG1d
G1
G1 G1TG1 + chHd

G1
G1HTG1 = 0 (2.13)

so that chG1d
G1
G1 G1 = −chHdG1G1H . In principle, dG1G1 G1 , d

G1
G1H 6= 0; however there are no known

examples of simple group LH model with this property.
This line of argument has shown that in order for PGBs from a coset to form a potential

of the form

V1 = λ1(φf + [hh])2 + · · · , (2.14)

where the form of this potential is guaranteed by a symmetry, G1, it is necessary that the
generators of G1 be an admixture of generators in H and G/H. Specifically, the generators
in the direction of the Higgs boson, Xh, are a linear combination of those in G1 and H.
This demonstrates that the normalized generators, Xh, must trace to less than 1

2 against
all generators of G1, proving the requirement of partial support given in eq. (2.1). A similar
set of arguments applies for G2.

Two Higgs doublet models have slightly different source field transformations:

δφ ∝ [ε1h2] + [ε2h1]. (2.15)

The corresponding conditions on the source field are obtained by requiring that the two
terms in the commutator come from two different Higgs. The relevant terms are

Xφ ∝ [T h1
G1 , c

h2
H T

h2
H ] + [T h2

G1 , c
h1
H T

h1
H ]. (2.16)

Other than additional complexity, there are no new features to consider for this class of
models.

2.2 Constructing a potential

This section constructs the collective symmetry breaking potential with minimal field con-
tent and is representative of more general models. The minimal model involves groups that
have two sets of generators in G that transform as doublets. One of these doublets is an
element of H and the other is an element of G/H and is the physical pseudo-Goldstone
Higgs boson.

Using the results from the previous section, it is necessary for G1 and G2 to act in
distinct ways, i.e. eq. (1.3). Thus, the transformation of φ under G1 and G2 must be related

δφXφ
U1
∝ chG1 [T hG1 , Xh] = −chG2 [T hG2 , Xh]. (2.17)

Having constructed the symmetry pattern necessary for collective symmetry breaking, the
next step is to construct the potential.

As an example, the collective symmetry breaking potential that is realized in some
of the most common Little Higgs models, such as the Littlest Higgs, can be constructed
using the tools above. This structure is present in the model introduced in section 3.2.1.
Suppose G1 has

T1 ∈ G1 T2 ∈ G/G1, (2.18)

– 7 –
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Where T1 and T2 are doublet generators. Xh must be a combination of T1 and T2 to get
partial support.

Xh =
1√
2

(T1 + T2) ∈ G/H T hH =
1√
2

(T1 − T2) ∈ H. (2.19)

Under a G1 transformation, the Higgs transforms nonlinearly

h′Xh ∝ hXh + εT1 ∝ (h+
ε√
2

)Xh +
ε√
2
T hH . (2.20)

The Baker-Campbell-Hausdorff formula shows that the source field, φ, appears in the
commutator of the generators of G1 with the Higgs

Xφ ∝ [T1, Xh] ∈ G/H. (2.21)

Xφ must lie outside of G1 to avoid a shift symmetry:

Xφ ∝ [T1, Xh] ∝ [T1, T1] + [T1, T2]. (2.22)

Because the commutator of two generators of G1 is either 0 or lies within the root space of
G1, this requirement leads to the condition

[T1, T1] = α1TH . (2.23)

(T1 is a doublet, a set of 4 generators, so its commutator does not necessarily vanish). Thus
Xφ acquires the desired shift symmetry shown in eq. (1.3).

These shift symmetries show that there is a G1 covariant operator, O1, that when
expanded becomes

O1 = P1ΣP1 = φ/f + [hh]/f2 + · · · , (2.24)

where P1 is a projection operator that preserves G1. Thus, the desired potential is

V1 = λ1f
4 Tr O1O†1. (2.25)

The next step is to consider the source of the minus sign difference between the two
quartics in this example. The correction to φ is proportional to [T1, T2]. This correction is
written more suggestively as

[TG1 , TG/G1 ]. (2.26)

The only construction that gives a potential with the opposite sign in the quartic of
eq. (2.28) requires flipping the generators that are in G/G1 with the generators in G1:

T2 ∈ G2 T1 ∈ G/G2 [T2, T2] = α2TH . (2.27)

As before, the Higgs acquires a shift symmetry. The correction to the quartic is [T2, T1] so
there is a G2 covariant operator, O2,

O2 = P2ΣP2 = φ/f − [hh]/f2 + · · · , (2.28)

– 8 –
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where P2 is a projection operator that preserves G2.
This example shows one straightforward, but not unique, way to fulfill the otherwise

obscure eq. (2.17). If the Higgs can be expressed as

Xh = c1TG1∩G/G2 + c2TG2∩G/G1 , (2.29)

then the opposite-sign shift symmetries are automatically satisfied. The minimal models
SU(5)/SO(5), SU(6)/Sp(6) and SU(5)/SU(3) × SU(2) × U(1) all use this mechanism to
obtain the difference in sign between the two quartic terms.

2.3 Relation of partial support to special embeddings

Special embeddings of Lie groups are subgroups whose roots are not the roots of the full
group. More colloquially, special embeddings are those subgroups whose Dynkin diagrams
are not created by removing nodes of the extended Dynkin diagrams. A familiar class of
special embeddings are SO(2n − 1) in SO(2n). “Partial support” implies that either H
or both G1 and G2 must be special embeddings of G. The broken generators of the Higgs
must lie both inside and outside of the Gs to get partial support. In the basis chosen by
the root space of G, the roots of a regular embedding are simple subsets of the roots of G
up to a mixing of the Cartan subalgebra.

The need for a special embedding is seen directly from figure 2. The condition of
partial support in eq. (2.7) is

chG1 6= 0 and chH 6= 0. (2.30)

This decomposes an element in XG/H into TH and TG1 . XG/H and TH are orthogonal
so the only way that the decomposition can have a nonzero projection onto TH is if the
generators of TG1 and TH are not orthogonal; in other words, the two are relatively special
embeddings. This argument is seen pictorially from figure 2; the only way to have a nonzero
projection of the Higgs onto TH is to have the axis of G1 be at an angle with respect to the
axis of H. G1 and H are relatively special embeddings. As a result, one of the two must
be a special embedding in G.

Collective quartics require specifying the embeddings of three groups (H, G1 and G2)
into G. It is possible to have two apparently regular embeddings where the choice of basis
is not mutually compatible. This mutual incompatibility results in the roots of the second
group being a linear combination of the roots of the generators of the first group. For
instance, consider two SU(2) subgroups of SU(3). The first subgroup is always chosen to
be transformations of the form

USU(2)1 ∼

� � 0
� � 0
0 0 1

 ; (2.31)

however, the second SU(N) subgroup is of the form

USU(2)2 ∼

 1 0 0
0 cθ sθ
0 −sθ cθ

USU(2)1

 1 0 0
0 cθ −sθ
0 sθ cθ

 , (2.32)
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where θ is a fixed value defining the relative embedding of SU(2)1 to SU(2)2. If sin 2θ 6= 0,
then SU(2)2 is a relatively special embedding to SU(2)1. This simple example shows that
while H and G must be relatively special embeddings, it is not always clear which one is a
special embedding in G.

The requirement that a collective quartic requires special embeddings is the strongest
constraint in building minimal LH models. Large coset spaces admit many structures
of the form described in eq. (2.32) and therefore the Higgs can be spread throughout
the coset. The ability to support the Higgs in multiple location means that large cosets
usually admit relatively special embeddings and the condition of partial support does
not constrain larger models. Small dimensional cosets are much more constrained and
spreading the Higgs out over multiple generators restricts the possible candidate theories.
Requiring the Gs to act linearly on the electroweak generators of the Standard Models
further restricts possible models.

3 Models

This section categorizes Little Higgs models that derive from a simple group that have
collective quartic couplings with the fewest number of pseudo-Goldstone bosons. The
smallest Little Higgs models known are SU(5)/SO(5) and SU(6)/Sp(6) and each have 14
Goldstone bosons. This section only considers theories with no more than 14 Goldstones.
Additionally, H must have rank greater than or equal to 2 and G/H needs to be at least
dimension 7. The list below contains all cosets that satisfy these constraints:

• Dim 7: a3/a2, b3/g2, d4/b3

• Dim 8: g2/d2, c3/c2×c1, a3/a1×a1×a0, b4/d4, a4/a3×a0

• Dim 9: a3/d2, a4/a3, d5/b4

• Dim 10: b3/b2×a0, b5/d5, a5/a4×a0

• Dim 11: b3/b2, c3/c2, a5/a4, d6/b5

• Dim 12: c3/a2×a0, c4/c3×c1, b6/d6, b3/d2×b1, d4/a3×a0, a6/a5×a0, c3/c1×c1×c1,
a4/a2×a1×a0, b3/a2×a0

• Dim 13: c3/a2, d4/a3, a6/a5, d7/b6, b3/a2, a4/a2×a1

• Dim 14: a4/b2, a5/c3, b4/b3×a0, b7/d7, d4/g2, a7/a6×a0

where the groups are labeled by their standard Dynkin name (e.g. a3 = SU(4)) and a0 =
U(1). The next step in the classification is to find special subgroups of G. If H is special,
then these theories are called “special cosets”. Otherwise, it is necessary to find special
subgroups for G1 and G2, denoted as “special quartics”.
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3.1 Special cosets

The first class of models where there is a collective quartic are those in which H is a special
embedding of G, but G1 and G2 are regular embeddings of G. From the list presented above,
the special embeddings are

G/H =


SO(n)/G2, n = 7, 8

SU(n)/SO(n), n = 4, 5

SU(2n)/Sp(2n), n = 3

SO(2n)/SO(2n− 1) n = 4, . . . , 7

. (3.1)

• SO(7)/G2 is simple. The root space of SO(7) only contains a single doublet. Since
at least 2 doublets are needed for partial support, this model is ruled out. For the
case SO(8)/G2, SU(2)L ×U(1)Y ⊂ SU(2)L × SU(2)R ⊂ SO(4)× SO(3). The SU(2)L
is a diagonal combination of one of the SU(2)s in the SO(4) and the SO(3). SO(8)
contains two doublets but they do not commute into the triplet, which rules out this
model.

• SU(4)/SO(4)’s field content only admits Higgs doublets and neutral singlets and
therefore has dangerous singlets.

• SO(2n)/SO(2n − 1) (including SU(4)/Sp(4) ' SO(6)/SO(5) ) suffer from the dan-
gerous singlet problem [22]. In general, there exist multiple doublets. Simple compu-
tation shows that these doublets commute into a singlet. Giving the singlet a charge
would also give one of the doublets a different charge, theerby preventing the mixing
needed for a LH model.

The models with the fewest number of fields that have collective quartics are
SU(5)/SO(5) and SU(6)/Sp(6) [15, 16]. These are well known examples of Little Higgs
models.

3.2 Special quartics

The second type of collective quartic arises when G1 and G2 are special embeddings of G.
These cases are easy to identify by checking all possible special embeddings that might
contain the SM. In almost every case, the special embeddings do not contain the SM.
Notable exceptions are SU(N)/SO(N) where the SO(N) contains the diagonal SU(2) ×
SU(2) of the SU(N). For SU(2N)/Sp(2N), the Sp(2N) also contains a diagonal subgroup
of SU(2N).

One coset that admits a special quartic is SU(5)/SU(3) × SU(2) × U(1) where there
are two overlapping SO(5)s that generate the Higgs mass. This model is discussed in
some depth below. This model illustrates a duality between special embedding and special
quartics. In the Littlest Higgs, the unbroken group was H = SO(5), which is a special
embedding, and the non-linearly realized group generating the Higgs quartic is SU(3) ×
SU(2)×U(1), which is a regular embedding. A special quartic is generated by interchanging
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the non-linearly realized groups with the unbroken global symmetry group. There must be
two distinct SO(5) embeddings in order for this duality to hold, but frequently there is a
parity that guarantees this is the case.

The more challenging set of special quartics to identify are those whose G1 and G2

are either regular or special embeddings depending on the relative alignment of the Gs to
H. If there are multiple ways of embedding G1 in G, then linear combinations of these
embeddings can also satisfy the algebra of G1. An example is the Simple Custodially
Symmetric Little Higgs (SO(9)/SO(5)×SO(4)) [19]. The collective quartic arises from two
G1,2 = SO(5)× SO(4). On the surface, this model looks like a case where both G1,2 and H
are regular embeddings. Using the standard basis of roots for SO(9) [24], the roots of H are
sums of the roots of G and H is a special embedding. Alternatively, it is possible to choose
a basis where H is regular, however G1,2 are then special. SO(9)/SO(5)×SO(4) shows that
the distinction between special cosets and special quartics is not always well-defined.

3.2.1 SU(5)/SU(3)× SU(2)×U(1)

The smallest viable special quartics model is SU(5)/SU(3) × SU(2) × U(1) and it is the
“dual” of the Littlest Higgs where the special embedding of the unbroken symmetry is
interchanged with the regular embedding of the non-linearly realized groups. Much of the
structure between the two theories is the same. The generators of the SM are

τa =
1

2
√

2

σa 0 0
0 0 0
0 0 −σa∗

 Y =
1
2

112 0 0
0 0 0
0 0 −112

 . (3.2)

The breaking is done by an adjoint field Σ, where

〈Σ〉 = Σ0 =
1

2
√

15

2 112 0 0
0 2 0
0 0 −3 112

 . (3.3)

These broken directions are parameterized as

Σ = eiπ/f Σ0 e
−iπ/f , (3.4)

where the coset space contains a Higgs, a charged triplet as the source field and a charged
scalar and is decomposes as

π =

 0 0 φlm + εlms

0 0 hm

φ†ij + εijs
† h†i 0

 . (3.5)

The fields transform as

h ∼ 2 1
2

φ ∼ 31 s ∼ 11 (3.6)

under SU(2)L ×U(1)Y .

– 12 –



J
H
E
P
0
6
(
2
0
1
0
)
0
4
1

The leading order Lagrangian is

Lkin =
6f2

5
Tr |DµΣ|2, (3.7)

where the constant 6
5 is chosen for canonical kinetic terms for the definition in eq. (3.5).

Within the unbroken subgroup, H, there exists a doublet that commutes with the
Higgs to give the triplet and scalar. This doublet is

h̃ T hH =

 0 h̃ 0
h̃† 0 0
0 0 0

 (3.8)

and participates in collective symmetry breaking together with the Higgs; this doublet is
the T hH that played an important role in the previous section. While there is no regular em-
bedding that contains a linear combination of the two Higgses, there is a special embedding
that does, SO(5). There exist two different SO(5)s that contain the Higgs.

The two SO(5)s that contain the Higgs are constructed from the generators that obey

T1aP1 + P1T
T
1a = 0 T2aP2 + P2T

T
2a = 0, (3.9)

where

P1 =

 0 0 112

0 1 0
112 0 0

 P2 =

 0 0 112

0 −1 0
112 0 0

 . (3.10)

The generators that satisfy these equations are exactly the same, except for the four gen-
erators

T1,2 =
1√
2

(Xh
G/H ± T hH) =

1√
2

 0 ±hT 0
±h∗ 0 h

0 h† 0

 (3.11)

with the ± depending on which Pi is used. These generators are T1 and T2 used in the
previous example. The scalar is contained in both of the SO(5)s and so receives a Higgs-like
shift symmetry. Under action of T1, there are two relevant sets of transformations: those
that, to leading order, shift the Higgs boson denoted by ε1, and those that shift the charged
singlet denoted by ε̃1. These act in the following manner:

δε1


hi

φij

s

=


εi1f + · · ·
− i

4(εi1h
j + εj1h

i) + · · ·
0

δε̃1


hi

φij

s

=


0

0

ε̃1f + · · ·
(3.12)

and under the action of the two transformations in T2a, the fields transform as

δε2


hi

φij

s

=


εi2f + · · ·
i
4(εi2h

j + εj2h
i) + · · ·

0

δε̃2


hi

φij

s

=


0

0

ε̃2f + · · ·
(3.13)
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These transformations allow for the expected Little Higgs form of the potential:

V =
3
5
λ1f

4 Tr P1ΣP1Σ∗ +
3
5
λ2f

4 Tr P2ΣP2Σ∗

= λ1

(
fφij +

i

2
hihj

)2

+ λ2

(
fφij − i

2
hihj

)2

+ · · · (3.14)

Upon integrating out the triplet, an independent Higgs quartic is formed. The gauge
quadratic divergences are not canceled, so this model is an Intermediate Higgs model but
with a quartic coupling and no dangerous singlets.

The Higgs quartic is

λ−1 = λ−1
1 + λ−1

2 (3.15)

and the mass of the triplet is

m2
φ = (λ1 + λ2)f2 = 4λf2/ sin2 2θλ, (3.16)

where tan2 θλ = λ1/λ2. This theory does not have custodial SU(2) and there are two
contributions to the T parameter. The first arises from the triplet vev and the second
arises from the expansion of the kinetic term of eq. (3.7). After integrating out φ, the
operator that contributes to the T parameter is induced:

Leff =
1

Λ2
T

|h†Dµh|2, (3.17)

where ΛT is

1
Λ2
T

=
−1
f2

(
1− 1

4
(λ1 − λ2)2

(λ1 + λ2)2

)
=
−1
f2

(
1− 1

4
cos2 2θλ

)
. (3.18)

Since the bounds the T parameter require ΛT >∼ 3 TeV, these contributions set a bound on
f >∼ 3 TeV unless there is another contribution to the T parameter. The effects from the
T parameter can be lessened by having a moderately large Higgs mass which contributes
negatively to the T parameter and positively to the S parameter. The degree to which this
can be employed depends upon other contributions to the S parameter.

Other precision electroweak observables are model-dependent and require specifying
how the top quarks cancel the quadratic divergences, how the operators in eq. (3.14) are
generated and how the gauge quadratic divergences are cut off. Since there are no extra
gauge bosons, there are no extra mixings that induce the S parameter. This theory might
be embedded into a more complete moose diagram or an AdS construction [5, 25–33]. The
masses of the new vector bosons are now independent from the masses of the top partners
and can have masses greater than 3 TeV (required by the S parameter) without forcing the
top partners to become heavy or pushing the limits of perturbativity.
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4 Conclusion

In Little Higgs models, the Higgs is a pseudo-Goldstone boson that results from the break-
ing of the group G to H. Together with the idea of collective symmetry breaking, Lit-
tle Higgs models generate a quartic term for the Higgs without generating a mass term,
thereby avoiding problems with fine tuning and overly light Higgs. The two symmetries
that participate in the collective symmetry breaking are G1 and G2. The key requirement
in constructing minimal Little Higgs models is partial support: the Higgs must be acted
upon by both G1 and G2. Partial support is equivalent to the embedding of H into G being
relatively special to the embedding of G1 and G2 into G.

The requirement of partial support leads to the classification of the smallest possible
LH models by exhaustion. Specifically, none of the minimal field content models listed in
eq. (1.5) existed. The smallest possible LH model with a collective quartic is SU(5)/SU(3)×
SU(2)×U(1) using two different SO(5)s as G1 and G2. Because of the absence of particles
to act as gauge boson longitudinal modes for an enlarged gauge group, this LH model
must be an Intermediate Higgs model [21]. The source field for this model has electroweak
quantum numbers of 31. In addition to the source field, SU(5)/SU(3)× SU(2)×U(1) also
contains a charged scalar that does not participate in the collective symmetry breaking.
The absence of custodial SU(2) is a drawback to this model, however, fully specifying
a TeV-scale model (including the top partners) could aid in reducing the T parameter.
In fact, many models with top partners can have large positive contributions to the T

parameter (see for instance [18, 34, 35]) and this negative contribution might be desirable.
Further problems with electroweak precision tests, most importantly the S parameter, are
alleviated by the minimal structure of the model [36–38]. The relevant measurements for
collider physics depend upon the origin of the top quark’s Yukawa coupling. While the
origin of the Yukawa coupling is not explored here, many of the features are similar to
other LH models and can be measured at colliders [39–46].

The classification presented in this article can be used to investigate the higher order
interactions of the Higgs boson arising from the non-linear sigma model structure [47, 48].
The nature of radiatively driven electroweak symmetry breaking in Little Higgs models
may be further explored using the general methods in this paper [1, 14, 17, 49, 50]. The
Higgs may decays to other light scalars in Little Higgs models and by understanding the
deeper structure of these theories, it may be possible to link new decays to the structure
of collective quartics [51–53].

The classification of collective quartic described in this article only applies to models
where the global symmetry group, G, is simple. Many LH models are described by product
groups [1–4, 6]. All of these theories have more pseudo-Goldstone bosons than those
considered in this article, but their overall structure may be simpler to realize in ultraviolet
completions of Little Higgs models. Therefore, extending this work to product symmetry
groups could be a fruitful and interesting pursuit. In addition to product groups, the
structure of T -parity models could be further elucidated from this work [54, 55]

As a final note, this article did not prove whether it is possible to have 30 source
field without having a dangerous tadpole; however, no such models were found. The
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impossibility of such models was conjectured in [22] and a small reward was offered. Further
developments of the techniques in this article may prove this conjecture.
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