905 research outputs found

    The motion of a plate in a rotating fluid at an arbitrary angle of attack

    Get PDF
    Slow motion of a thin plate at a finite angle of attack in a rotating container filled with a viscous incompressible fluid is analysed. The Rossby and Ekman numbers are assumed to be small. The solution method is developed by studying horizontal translation of an elliptical plate. The plate is shown to carry a stagnant Taylor column with it as it moves. Detailed analysis of the structure of the vertical shear column bounding the Taylor column is circumvented by integrating the equations of motion across the shear column. A jump condition based upon mass conservation in the shear column which relates the geostrophic regions inside and outside the Taylor column results. This jump condition and its method of derivation can be used to analyse arbitrary (slow) motion of any thin plate at any angle of attack. The fluid motion resulting when a disk moves using all six degrees of freedom at an infinitesimal angle of attack is discussed. The forces and moments on the disk are calculated and the streamlines of the geostrophic flow are displayed

    Turbulence and transition modeling for high-speed flows

    Get PDF
    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level

    175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser

    No full text
    We report a harmonically mode-locked vertical external cavity surface emitting laser (VECSEL) producing 400 fs pulses at a repetition frequency of 175 GHz with an average output power of 300 mW. Harmonic mode-locking was established using a 300 µm thick intracavity single crystal diamond heat spreader in thermal contact with the front surface of the gain sample using liquid capillary bonding. The repetition frequency was set by the diamond microcavity and stable harmonic mode locking was achieved when the laser cavity length was tuned so that the laser operated on the 117th harmonic of the fundamental cavity. When an etalon placed intracavity next to the gain sample, but not in thermal contact was used pulse groups were observed. These contained 300 fs pulses with a spacing of 5.9 ps. We conclude that to achieve stable harmonic mode locking at repetition frequencies in the 100s of GHz range in a VECSEL there is a threshold pulse energy above which harmonic mode locking is achieved and below which groups of pulses are observed

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity

    Simulation tests of galaxy cluster constraints on chameleon gravity

    Get PDF
    We use two new hydrodynamical simulations of Lambda cold dark matter (LambdaCDM) and f(R) gravity to test the methodology used by Wilcox et al. (W15) in constraining the effects of a fifth force on the profiles of clusters of galaxies. We construct realistic simulated stacked weak lensing and X-ray surface brightness cluster profiles from these cosmological simulations, and then use these data projected along various lines of sight to test the spherical symmetry of our stacking procedure. We also test the applicability of the NFW profile to model weak lensing profiles of clusters in f(R) gravity. Finally, we test the validity of the analytical model developed in W15 against the simulated profiles. Overall, we find our methodology is robust and broadly agrees with these simulated data. We also apply our full Markov Chain Monte Carlo analysis from W15 to our simulated X-ray and lensing profiles, providing consistent constraints on the modified gravity parameters as obtained from the real cluster data, e.g. for our LambdaCDM simulation we obtain |fR0| < 8.3 × 10-5 (95 per cent CL), which is in good agreement with the W15 measurement of |fR0| < 6 × 10-5. Overall, these tests confirm the power of our methodology which can now be applied to larger cluster samples available with the next generation surveys

    Energy Monitoring & Management System (EMMS)

    Get PDF
    The Energy Monitoring and Management System (EMMS) is developing an electrical power meter to help make electricity more available in energy impoverished regions of the world. The meter fills a unique niche for energy tracking and regulation within micro-grid systems. The EMMS project has partners in Burkina Faso and Zimbabwe: Open Door Development (ODD), the Institut Missiologique du Sahel (IMS), and the Theological College of Zimbabwe (TCZ). Ties are also maintained on a regular basis with IEEE Smart Village for potential future widespread system implementation. Recent work on the EMMS meter has been focused on resolving the last few remaining bugs, establishing a robust communication system, and developing a centralized server-based interface which aids with meter configuration and administration. The team has also begun several future developments which include datalogging and remote access features.https://mosaic.messiah.edu/engr2021/1004/thumbnail.jp

    Quantifying the risk of plastic ingestion by ichthyofauna in the Balearic Islands (western Mediterranean Sea)

    Get PDF
    This study investigates the risk plastic debris ingestion poses to coastal marine taxa in the Balearic Islands in the western Mediterranean Sea. Here, we use species observations and environmental data to model habitat maps for 42 species of fish. For each species, we then match estimates of habitat suitability against the spatial distribution of plastic debris to quantify plastic exposure, which we further combine with species-wise ingestion rates to map the risk of plastic ingestion. The results indicate that the risk of plastic ingestion is particularly high in the north-west and south-east regions and the risks varied strongly between species, with those at higher trophic levels being the most vulnerable overall. Extending this work to other coastal regions within the Mediterranean Sea and beyond will allow managers and policymakers to target the most appropriate areas and types of interventions for mitigating plastic pollution on coastal diversity in the marine environment.En prens

    Dynamic virtual simulation of the occurrence and severity of edge loading in hip replacements associated with variation in the rotational and translational surgical position

    Get PDF
    Variation in the surgical positioning of total hip replacement can result in edge loading of the femoral head on the rim of the acetabular cup. Previous work has reported the effect of edge loading on the wear of hip replacement bearings with a fixed level of dynamic biomechanical hip separation. Variations in both rotational and translational surgical positioning of the hip joint replacement combine to influence both the biomechanics and the tribology including the severity of edge loading, the amount of dynamic separation, the force acting on the rim of the cup and the resultant wear and torque acting on the cup. In this study, a virtual model of a hip joint simulator has been developed to predict the effect of variations in some surgical positioning (inclination and medial-lateral offset) on the level of dynamic separation and the contact force of the head acting on the rim as a measure of severity of edge loading. The level of dynamic separation and force acting on the rim increased with increased translational mismatch between the centres of the femoral head and the acetabular cup from 0 to 4 mm and with increased cup inclination angle from 45° to 65°. The virtual model closely replicated the dynamics of the experimental hip simulator previously reported, which showed similar dynamic biomechanical trends, with the highest level of separation being found with a mismatch of 4 mm between the centres of the femoral head and acetabular cup and 65° cup inclination angle
    • …
    corecore