251 research outputs found

    Implications of Skinner\u27s Verbal Behavior for Studying Dementia

    Get PDF
    Persons with dementia experience continual declines in a number of abilities. Language abilities are particularly hard hit and become increasingly impaired as the underlying disease progresses. These language impairments make verbal communication very challenging for family and professional caregivers. As a result, caregivers may inadvertently punish verbal behavior, thereby exacerbating the deterioration of verbal repertoires. Although the topography of language impairments associated with dementia have been well described, less empirical work has been conducted concerning how to minimize these impairments and their deleterious effects. In 1957 B.F. Skinner outlined his conceptualization of language and cognition in his book Verbal Behavior. This paper will explore the implications of Skinner’s Verbal Behavior for studying communication impairments associated with dementia

    Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales

    Get PDF
    SummaryClassic life-history theory predicts that menopause should not occur because there should be no selection for survival after the cessation of reproduction [1]. Yet, human females routinely live 30 years after they have stopped reproducing [2]. Only two other species—killer whales (Orcinus orca) and short-finned pilot whales (Globicephala macrorhynchus) [3, 4]—have comparable postreproductive lifespans. In theory, menopause can evolve via inclusive fitness benefits [5, 6], but the mechanisms by which postreproductive females help their kin remain enigmatic. One hypothesis is that postreproductive females act as repositories of ecological knowledge and thereby buffer kin against environmental hardships [7, 8]. We provide the first test of this hypothesis using a unique long-term dataset on wild resident killer whales. We show three key results. First, postreproductively aged females lead groups during collective movement in salmon foraging grounds. Second, leadership by postreproductively aged females is especially prominent in difficult years when salmon abundance is low. This finding is critical because salmon abundance drives both mortality and reproductive success in resident killer whales [9, 10]. Third, females are more likely to lead their sons than they are to lead their daughters, supporting predictions of recent models [5] of the evolution of menopause based on kinship dynamics. Our results show that postreproductive females may boost the fitness of kin through the transfer of ecological knowledge. The value gained from the wisdom of elders can help explain why female resident killer whales and humans continue to live long after they have stopped reproducing

    Quasirandom permutations are characterized by 4-point densities

    Get PDF
    For permutations π and τ of lengths |π|≤|τ| , let t(π,τ) be the probability that the restriction of τ to a random |π| -point set is (order) isomorphic to π . We show that every sequence {τj} of permutations such that |τj|→∞ and t(π,τj)→1/4! for every 4-point permutation π is quasirandom (that is, t(π,τj)→1/|π|! for every π ). This answers a question posed by Graham

    Rapid assembly and rejuvenation of a large silicic magmatic system : insights from mineral diffusive profiles in the Kidnappers and Rocky Hill deposits, New Zealand.

    Get PDF
    The timescales over which magmas in large silicic systems are reactivated, assembled and stored remains a fundamental question in volcanology. To address this question, we study timescales from Fe–Mg interdiffusion in orthopyroxenes and Ti diffusion in quartz from the caldera-forming 1200 km3 Kidnappers and 200 km3 Rocky Hill eruptions from the Mangakino volcanic centre (Taupo Volcanic Zone, New Zealand). The two eruptions came from the same source area, have indistinguishable 40Ar/39Ar ages (∼1.0 Ma) and zircon U–Pb age spectra, but their respective deposits are separated by a short period of erosion. Compositions of pumice, glass and mineral species in the collective eruption deposits define multiple melt dominant bodies but indicate that these shared a common magmatic mush zone. Diffusion timescales from both eruptions are used to build on chemical and textural crystal signatures and interpret both the crystal growth histories and the timing of magma accumulation. Fe–Mg interdiffusion profiles in orthopyroxenes imply that the three melt-dominant bodies, established through extraction of melt and crystals from the common source, were generated within 600 years and with peak accumulation rates within 100 years of each eruption. In addition, a less-evolved melt interacted with the Kidnappers magma, beginning ∼30 years prior to and peaking within 3 years of the eruption. This interaction did not directly trigger the eruption, but may have primed the magmatic system. Orthopyroxene crystals with the same zoning patterns from the Kidnappers and Rocky Hill pumices yield consistently different diffusion timescales, suggesting a time break between the eruptions of ∼20 years (from core–rim zones) to ∼10 years (outer rim zones). Diffusion of Ti in quartz reveals similarly short timescales and magmatic residence times of <30 years, suggesting quartz is only recording the last period of crystallization within the final eruptible melt. Accumulation of the eruptible magma for these two, closely successive eruptions was accomplished over centuries to decades, in contrast to the gestation time of the magmatic system of ∼200 kyr, as indicated by zircon age patterns. The magmatic system was able to recover after the Kidnappers eruption in only ∼10–20 years to accumulate enough eruptible melt and crystals for a second ∼200 km3 eruption. Our data support concepts of large silicic systems being stored as long-lived crystal mushes, with eruptible melts generated over extraordinarily short timescales prior to eruption

    Aubry sets vs Mather sets in two degrees of freedom

    Full text link
    We study autonomous Tonelli Lagrangians on closed surfaces. We aim to clarify the relationship between the Aubry set and the Mather set, when the latter consists of periodic orbits which are not fixed points. Our main result says that in that case the Aubry set and the Mather set almost always coincide.Comment: Revised and expanded version. New proof of Lemma 2.3 (formerly Lemma 14

    Nitrate Determination by a Modified Conway Microdiffusion Method

    Get PDF
    The proposed modified Conway microdiffusion method provides for consecutive determinations of NH?- and NO?-N in a given aliquot of soil extract. Analyses of primary nitrate standards showed essentially complete recovery in the range of 1 to 20 ppm NO?-N (4 to 80 µg N/aliquot). Results for (NH? + NO?)-N and NO?-N in soil extracts are comparable to those obtained, respectively, by macrodistillation with Devarda's alloy and by the phenoldisulfonic acid colorimetric method. The method is rapid and suitable for routine analyses of soil extracts, the equipment is inexpensive, and no interferences are apparent

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed
    • …
    corecore