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QUASIRANDOM PERMUTATIONS ARE CHARACTERIZED
BY 4-POINT DENSITIES

Daniel Král’ and Oleg Pikhurko

Abstract. For permutations π and τ of lengths |π| ≤ |τ |, let t(π, τ) be the prob-
ability that the restriction of τ to a random |π|-point set is (order) isomorphic to
π. We show that every sequence {τj} of permutations such that |τj | → ∞ and
t(π, τj) → 1/4! for every 4-point permutation π is quasirandom (that is, t(π, τj) →
1/|π|! for every π). This answers a question posed by Graham.

1 Introduction

Roughly speaking, a combinatorial object is called quasirandom if it has properties
that a random object has asymptotically almost surely. This notion has been defined
for various structures such as tournaments [CG91a], set systems [CG91b], sub-
sets of Z/nZ [CG92], k-uniform hypergraphs [CG90,Gow06,Gow07,HT89,KRS02],
groups [Gow08], etc.

In particular, quasirandomness has been extensively studied for graphs. Extend-
ing earlier results of Rödl [Rod86] and Thomason [Tho87], Chung et al. [CGW89]
gave seven equivalent properties of graph sequences such that the sequence of random
graphs {Gn,1/2} possesses them with probability one. These properties include densi-
ties of subgraphs, values of eigenvalues of the adjacency matrix or the typical size of
the common neighborhood of two vertices. In particular, it follows from the results
in [CGW89] that if the density of 4-vertex subgraphs in a large graph is asymp-
totically the same as in Gn,1/2, then this is true for every fixed subgraph. Graham
(see [Coo04, page 141]) asked whether a similar phenomenon also occurs in the case
of permutations.

Let us state his question more precisely. Let Sk consist of permutations on [k] :=
{1, . . . , k}. We view each π ∈ Sk as a bijection π : [k] → [k] and call |π| := k its
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length. For π ∈ Sk and τ ∈ Sm with k ≤ m, let t(π, τ) be the probability that a
random k-point subset X of [m] induces a permutation isomorphic to π (that is,
τ(xi) ≤ τ(xj) iff π(i) ≤ π(j) where X consists of x1 < · · · < xk). A sequence {τj}
of permutations has Property P(k) if |τj | → ∞ and t(π, τj) = 1/k! + o(1) for every
π ∈ Sk. It is easy to see that P(k + 1) implies P(k). Graham asked whether there
exists an integer m such that P(m) implies P(k) for every k. Here we answer this
question:

Theorem 1. Property P(4) implies Property P(k) for every k.

It is trivial to see that P(1) �⇒ P(2) and an example that P(2) �⇒ P(3) can be
found in [Coo04]. An unpublished manuscript of Cooper and Petrarca [CP08] shows
that P(3) �⇒ P(4) and mentions that Chung could also show this (as early as 2001).
Being unaware of [CP08], we found yet another example that P(3) �⇒ P(4). Since it
is quite different from the construction in [CP08], we present it in Section 4.

Since these notions deal with properties of sequences of permutations, we find it
convenient to operate with an appropriately defined “limit object”, analogous to that
for graphs introduced by Lovász and Szegedy [LS06]. Here we use the analytic aspects
of permutation limits that were studied by Hoppen et al. [HKMRS12,HKMS10] and
we derive Theorem 1 from its analytic analog (Theorem 3).

Let the (normalized) discrepancy d(τ) of τ ∈ Sn be the maximum over intervals
A, B ⊆ [n] of

∣
∣
∣
∣

|A| |B|
n2

− |τ(A) ∩ B|
n

∣
∣
∣
∣
.

Cooper [Coo04] calls a permutation sequence {τj} quasirandom if |τj | → ∞ and
d(τj) → 0. He also gives other equivalent properties [Coo04, Theorem 3.1] and he
discusses various applications of “random-like” permutations. Using the results of
[HKMRS12,HKMS10], it is not hard to relate quasirandomness and Properties P(k):

Proposition 2. A sequence {τj} of permutations is quasirandom if and only if it
satisfies Property P(k) for every k.

The proof of Proposition 2 can be found in Section 5. Thus our Theorem 1 implies
that P(4) alone is equivalent to quasirandomness.

Finally, let us remark that McKay et al. [MMW02, pp. 121] also defined a notion
of quasirandomness for permutations. Their definition, although related, is different
from that of Cooper as it deals with sequences of sets of permutations.

2 Limits of Permutations

Here we define convergence of permutation sequences and show how a convergent
sequence can be associated with an analytic limit object. We refer the reader to
[HKMRS12,HKMS10] for more details.
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Let Z consist of probability measures μ on the Borel σ-algebra of [0, 1]2 that
have uniform marginals, that is, μ(A × [0, 1]) = μ([0, 1] × A) = λ(A) for every Borel
set A ⊆ [0, 1], where λ is the Lebesgue measure on [0, 1].

Fix some μ ∈ Z. Let Vi = (Xi, Yi) for i ∈ [k] be independent random vari-
ables with Vi ∼ μ (that is, each Vi has distribution μ). We view an outcome
(X1, Y1, . . . , Xk, Yk) as an element of [0, 1]2k. For permutations π, τ ∈ Sk, let
Aπ,τ ⊆ [0, 1]2k correspond to the event that

Xi < Xj iff π(i) < π(j) & Yi < Yj iff τ(i) < τ(j)

(for example, the first statement above is equivalent to Xπ−1(1) < · · · < Xπ−1(k)).
Since each of the vectors (X1, . . . , Xk) and (Y1, . . . , Yk) is uniformly distributed over
[0, 1]k, the probability of the degenerate event

Dk :=
{

Xi = Xj or Yi = Yj for some i �= j
} ⊆ [0, 1]2k (1)

is zero. Note that the sets Aπ,τ for π, τ ∈ Sk partition [0, 1]2k \ Dk. If we reorder the
indices in an outcome (V1, . . . , Vk) ∈ [0, 1]2k \ Dk so that X1 < · · · < Xk, then the
new relative order on Y1, . . . , Yk ∈ [0, 1] defines a random permutation σ(k, μ) ∈ Sk.
In other words, if we land in Aπ,τ , then we set σ(k, μ) = τπ−1. Let the density t(π, μ)
of π ∈ Sk be the probability that σ(k, μ) = π. Equivalently,

t(π, μ) =
∑

ρ∈Sk

μk(Aρ,πρ) = k! μk(Aτ,πτ ), any τ ∈ Sk, (2)

where the last equality uses the fact that μk(Aρ,πρ) does not depend on ρ ∈ Sk

(because V1, . . . , Vk are independent and identically distributed).
A sequence of permutations {τj} is convergent if |τj | → ∞ and {t(π, τj)} con-

verges for every permutation π. This is the same definition of convergence as the
one in [HKMRS12,HKMS10] except we additionally require that |τj | → ∞; cf.
[HKMRS12, Claim 2.4].

It is easy to show that every sequence of permutations whose lengths tend to infin-
ity has a convergent subsequence; see e.g. [HKMS10, Lemma 2.11]. Furthermore, for
every convergent sequence {τj} there is μ ∈ Z such that for every permutation π we
have

lim
j→∞

t(π, τj) = t(π, μ). (3)

For the reader’s convenience, we sketch the proof from [HKMRS12] that μ exists. For
π ∈ Sk, let μπ ∈ Z be obtained by dividing the square [0, 1]2 into k×k equal squares
and distributing the mass uniformly on the squares with indices (i, π(i)), i = 1, . . . , k.
By Prokhorov’s theorem, {μτj

} has a subsequence that weakly converges to some
measure μ. We have μ ∈ Z as this set is closed in the weak topology. Finally, μ
satisfies (3) because, for any fixed π, the function t(π, −) : Z → R is continuous in
the weak topology and t(π, τj) = t(π, μτj

) + O(1/|τj |).
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We remark that Hoppen et al. [HKMRS12,HKMS10] proposed a slightly differ-
ent limit object: the regular conditional distribution function of Y with respect to
X, where (X, Y ) ∼ μ. Lemma 2.2 and Definition 2.3 in [HKMRS12] show how to
switch back and forth between the two objects.

Now, we are ready to state the analytic version of Theorem 1. Let us call μ ∈ Z
k-symmetric if t(π, μ) = 1/k! for every π ∈ Sk.

Theorem 3. Every 4-symmetric μ ∈ Z is the (uniform) Lebesgue measure on
[0, 1]2. In particular, μ is k-symmetric for every k.

Let us show how Theorem 3 implies Theorem 1. Suppose on the contrary that
some {τj} satisfies P(4) but not P(k). Fix π ∈ Sk and a subsequence {τ ′

j} such that
limj→∞ t(π, τ ′

j) exists and is not equal to 1/k!. Consider now a convergent subse-
quence {τ ′′

j } of {τ ′
j} and let μ ∈ Z be its limit. By (3), μ is 4-symmetric and, by The-

orem 3, μ is m-symmetric for every m. But then limj→∞ t(π, τ ′′
j ) = t(π, μ) = 1/k!,

which is the desired contradiction.

3 Proof of Theorem 3

In this section, let μ ∈ Z be arbitrary with t(π, μ) = 1/4! for every π ∈ S4. Let
λ ∈ Z denote the uniform measure on [0, 1]2. Our objective is to show that μ = λ.

Let V = (X, Y ) ∼ μ and v = (x, y) ∼ λ be independent. For brevity, let us
abbreviate

∫

[0,1]2 to
∫

. Define a function F : [0, 1]2 → [0, 1] by

F (a, b) := μ([0, a] × [0, b]) =
∫

V ≤(a,b)

dV,

where V ≤ (a, b) means that X ≤ a and Y ≤ b. Since μ has uniform marginals, the
function F is continuous.

First, we show that the 4-symmetry of μ uniquely determines certain integrals.

Lemma 4.

∫

F (X, Y )2 dV =
∫

F (X, Y )XY dV =
∫

F (x, y)2 dv =
1
9
.

Proof. Let Vi = (Xi, Yi) ∼ μ, for i = 1, 2, . . ., be independent random variables
distributed according to μ. By Fubini’s theorem, we have

∫

F (X, Y )2 dV =
∫

⎛

⎝

∫

V2≤V1

dV2

⎞

⎠

⎛

⎝

∫

V3≤V1

dV3

⎞

⎠ dV1 =
∫

A

d(V1, V2, V3),

where A = {(V1, V2, V3) : V2 ≤ V1 and V3 ≤ V1} ⊆ [0, 1]6. Note that

A\D3 =
⋃

π,τ∈S3
π(1)=τ(1)=3

Aπ,τ ,
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where D3 is defined by (1) and the union is over π, τ ∈ S3 such that π(1) = τ(1) = 3.
The 4-symmetry of μ and (2) imply that μk(Aπ,τ ) = (1/k!)2 for every k ≤ 4 and
π, τ ∈ Sk. Since μ3(D3) = 0, we have μ3(A) = 4 · (1/3!)2 = 1/9, as required.

Likewise,
∫

F (X, Y )XY dV =
∫

B

d(V1, . . . , V4), (4)

where B ⊆ [0, 1]8 corresponds to the event that V2 ≤ V1, X3 ≤ X1 and Y4 ≤ Y1. One
can derive (4) by replacing each factor by an integral (for example, X is replaced by
∫

X3≤X dV3) and applying Fubini’s theorem.
The integral in the right-hand side of (4) is equal to the μ4-measure of the union

of Aπ,τ over some (explicit) set of pairs π, τ ∈ S4. The measure of this set is uniquely
determined by the 4-symmetry of μ. Thus the integral does not change if we replace
μ by any other 4-symmetric measure. Considering the uniform measure λ, we obtain
∫

x2y2 dv = 1/9, as required.
Next, observe that (X1, Y2) is uniformly distributed in [0, 1]2 because V1 and V2

are independent and have uniform marginals. Again, the value of
∫

F (x, y)2 dv =
∫

[0,1]4

F (X1, Y2)2 d(V1, V2) =
∫

V3,V4≤(X1,Y2)

d(V1, . . . , V4),

does not depend on the choice of μ and can be easily computed by taking
μ = λ. ��

Since X is uniformly distributed in [0, 1], we have
∫

X2 dV = 1/3. Also,
∫

F (x, y)xy dv =
∫

v≥V

xy d(v, V ) =
1
4

∫

(1 − X2 − Y 2 + X2Y 2) dV.

We use the above identities and apply the Cauchy–Schwartz inequality twice to
get the following series of inequalities:

1
81

=
(∫

F (X, Y )XY dV

)2

≤
(∫

F (X, Y )2 dV

)

·
(∫

X2Y 2 dV

)

=
1
9

(

4 ·
∫

F (x, y)xy dv −
∫

(1 − X2 − Y 2) dV

)

=
1
9

(

4 ·
∫

F (x, y)xy dv − 1
3

)

≤ 4
9

√
∫

F (x, y)2 dv ·
√

∫

x2y2 dv − 1
27

=
1
81

.

Thus we have equality throughout. However, the last inequality is equality if and
only if F (a, b) is equal to a fixed multiple of ab almost everywhere with respect to
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the uniform measure λ. Since F is continuous and F (1, 1) = 1, we conclude that
F (a, b) = ab for all (a, b) ∈ [0, 1]2. Thus the measures μ and λ coincide on all rect-
angles [0, a] × [0, b] and on the ring of their finite Boolean combinations. Since this
ring generates the Borel σ-algebra on [0, 1]2, we have that μ = λ by the uniqueness
statement of the Carathéodory Theorem. This proves Theorem 3.

Remark 5. Our proof gives other sufficient conditions for μ = λ. For example, it
suffices to require that each of the three integrals of Lemma 4 is 1/9. The proof of
the lemma shows that, if desired, these integrals can be expressed as linear com-
binations of densities t(π, μ) for π ∈ S4. The single identity (

∫

F (x, y)xy dv)2 =
1
9

∫

F (x, y)2 dv is also sufficient for proving that μ = λ; however, if written as a
polynomial in terms of permutation densities (by mimicking the proof of Lemma 4),
it involves 5-point permutations. Our method can give other sufficient conditions in
this manner; the choice of which one to use may depend on the available information
about the sequence.

Remark 6. Also, the argument of Lemma 4 shows that, for every polynomial P (x, y)
and μ ∈ Z, the value of

∫

P (x, y) dμ(x, y) can be expressed as a linear combination
of permutation densities. This observation combined with the Stone–Weierstrass
Theorem gives the uniqueness of a permutation limit: if μ, μ′ ∈ Z have the same
permutation densities, then μ = μ′ (cf. [HKMRS12, Theorem 1.7]).

4 P(3) does not Imply P(4)

First, we construct a 3-symmetric measure μ ∈ Z which is not 4-symmetric. For
a ∈ [0, 1], let M(a) be the set of all the points (x, y) ∈ [0, 1]2 such that x + y ∈
{1−a/2, 1+a/2, a/2, 2−a/2} or y −x ∈ {−a/2, a/2, 1−a/2, a/2−1}. See Figure 1
for illustrations of this definition. Define μa ∈ Z for a ∈ [0, 1] to be the permutation
limit such that the mass is uniformly distributed on M(a). Because of the symme-
tries of μa (invariance under the horizontal and vertical reflections), we have that
t(π, μa) = 1/6 for every π ∈ S3 if and only if t(Id3, μa) = 1/6, where Id3 is the
identity 3-point permutation.

Routine calculations show that t(Id3, μ0) = 1/4 and t(Id3, μ1) = 1/8. Since
t(Id3, μa) is continuous in a, there exists b ∈ [0, 1] such that t(Id3, μb) = 1/6. More-
over, μb is not 4-symmetric. This can be verified directly; it also follows from Theo-
rem 3 since μb is not the uniform measure.

Figure 1: The sets M(0),M(1/3) and M(1)



GAFA QUASIRANDOM PERMUTATIONS

Take a sequence {τj} of permutations that converges to μb. For example, the
random sequence {σ(j, μb)} has this property with probability one, see [HKMS10,
Corollary 4.3]. Any such sequence {τj} satisfies P(3) but not P(4).

Remark 7. There are other ways how one can get an example of a 3-symmetric
non-uniform measure by transforming M(0) into M(1). For example, for 0 < a < 1,
let νa ∈ Z assign measure a to M(0) and measure 1−a to M(1) with the conditional
distributions being equal to μ0 and μ1. Again by continuity, there is a such that νa

is 3-symmetric.

Remark 8. Let us call a permutation π ∈ Sn k-inflatable if n > 1 and μπ is k-sym-
metric, where μπ ∈ Z is the measure associated with π as is described after (3).
Cooper and Petrarca [CP08] discovered many 3-inflatable permutations by com-
puter search, thus giving examples that P(3) �⇒ P(4). The results in [CP08] show
that a shortest 3-inflatable permutation has length 9 and that S9 has exactly four
3-inflatable permutations: (4, 3, 8, 9, 5, 1, 2, 7, 6), (4, 7, 2, 9, 5, 1, 8, 3, 6), and their ver-
tical reflections. Clearly, our Theorem 3 implies that no 4-inflatable permutation can
exist. In particular, this proves (in a stronger form) Conjecture 3 in [CP08] that no
4-inflatable permutation with certain properties exists.

5 Proof of Proposition 2

Let {τj} be an arbitrary sequence of permutations with |τj | → ∞. Let μj ∈ Z be the
measure associated with τj as is described after (3). It is straightforward to verify
that d(τj) = d(μj) + o(1), where

d(μ) := sup
∣
∣λ(A × B) − μ(A × B)

∣
∣

denotes the discrepancy of μ ∈ Z, with the supremum (in fact, it is maximum) being
taken over intervals A, B ⊆ [0, 1]. Also, it is not hard to show (cf. Remark 6) that
{τj} converges to μ if and only if {μj} weakly converges to μ.

First, suppose that {τj} satisfies P(k) for each k. This means that {τj} con-
verges to the uniform limit λ. For a, b ∈ [0, 1], let Fj(a, b) := μj([0, a] × [0, b]) and
F (a, b) := ab. Since d(λ) = 0 and

μj([a1, a2] × [b1, b2]) = Fj(a2, b2) − Fj(a1, b2) − Fj(a2, b1) + Fj(a1, b1),

we conclude that d(μj) ≤ 4 · ‖Fj − F‖∞. The weak convergence μj → λ of measures
in Z gives that Fj → F pointwise. Since F and each function Fj , defined on the
compact space [0, 1]2, are

√
2-Lipschitz, this implies that

‖Fj − F‖∞ → 0 (5)

(alternatively, (5) directly follows from [HKMRS12, Lemma 5.3]). Thus d(μj) → 0
and {τj} is quasirandom.



D. KRÁL’ AND O. PIKHURKO GAFA

Next suppose that d(τj) → 0. One way to establish Property P(k) is to use one
of the equivalent definitions of quasirandomness from [Coo04, Theorem 3.1] (namely
Property [mS]). Alternatively, if P(k) fails, then (by passing to a subsequence) we
can assume that {τj} converges to some μ ∈ Z with μ �= λ. However, we have that
d(μ) = 0, which implies μ = λ, contradicting our assumption. This finishes the proof
of Proposition 2.

6 Concluding Remarks

The theory of flag algebras developed by Razborov [Raz07] can be applied to per-
mutation limits: a permutation π : A → A is viewed as two binary relations, each
giving a linear order on A. For example, Lemma 4 can be stated and proved within
the flag algebra framework. This view has been helpful for us when developing our
proof.

A graph can be associated with a permutation π ∈ Sn as follows: let G(π)
be the graph on [n] with vertices i < j adjacent if π(i) < π(j). Fix μ ∈ Z and
sample a random permutation σ(n, μ). Define a function W : [0, 1]4 → {0, 1} by
W (x1, y1, x2, y2) = 1 if we have (x1, y1) < (x2, y2) or (x1, y1) > (x2, y2) compo-
nentwise and let W (x1, y1, x2, y2) = 0 otherwise. In other words, W is the indica-
tor function of the event that σ(2, μ) is the identity 2-point permutation. Clearly,
G(σ(n, μ)) can be generated by sampling independently points V1, . . . , Vn ∈ [0, 1]2,
each with distribution μ, and connecting those i, j ∈ [n] for which W (Vi, Vj) = 1.
The latter procedure corresponds to generating a random sample G(n, W ), where
W : [0, 1]2 × [0, 1]2 → [0, 1] is viewed as a graphon represented on Borel subsets of
[0, 1]2 with measure μ, see [LS06, Section 2.6] for details.

Lovász and Sós [LS08] and Lovász and Szegedy [LS11] presented various sufficient
conditions for a graphon W to be finitely forcible which, in the above notation, means
that there is m such that the distribution of G(m, W ) uniquely determines that of
G(k, W ) for every k. As far as we can see, none of these conditions directly applies
to the graphon associated with the uniform measure λ ∈ Z. Since we answered Gra-
ham’s question on quasirandom permutations by other means, we did not pursue
this approach any further.

We also refer the reader to Hoppen et al. [HKMS11, Section 5.3] who discuss finite
forcibility for permutation limits, being motivated by some questions in parameter
testing.
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[Rod86] V. Rödl. On the universality of graphs with uniformly distributed edges.

Discrete Mathematics, 59 (1986), 125–134.
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