3,434 research outputs found

    SOPHIE velocimetry of Kepler transit candidates VI. An additional companion in the KOI-13 system

    Full text link
    We report the discovery of a new stellar companion in the KOI-13 system. KOI-13 is composed by two fast-rotating A-type stars of similar magnitude. One of these two stars hosts a transiting planet discovered by Kepler. We obtained new radial velocity measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence that revealed an additional companion in this system. This companion has a mass between 0.4 and 1 Msun and orbits one of the two main stars with a period of 65.831 \pm 0.029 days and an eccentricity of 0.52 \pm 0.02. The radial velocities of the two stars were derived using a model of two fast-rotating line profiles. From the residuals, we found a hint of the stellar variations seen in the Kepler light curve with an amplitude of about 1.41 km/s and a period close to the rotational period. This signal appears to be about three order of magnitude larger than expected for stellar activity. From the analysis of the residuals, we also put a 3-sigma upper-limit on the mass of the transiting planet KOI-13.01 of 14.8 Mjup and 9.4 Mjup, depending on which star hosts the transit. We found that this new companion has no significant impact on the photometric determination of the mass of KOI-13.01 but is expected to affect precise infrared photometry. Finally, using dynamical simulations, we infer that the new companion is orbiting around KOI-13B while the transiting planet candidate is expected to orbit KOI-13A. Thus, the transiting planet candidate KOI-13.01 is orbiting the main component of a hierarchical triple system.Comment: Accepted in A&A Letters. 4 pages including 4 figures and the RV tabl

    Wendelstein 7-X Torus Hall Layout and System Integration

    Get PDF

    SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter

    Full text link
    We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 ±\pm 0.085 MJup_{Jup} and a radius of 1.325 ±\pm 0.043 RJup_{Jup} which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 ±\pm 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 ±\pm 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 ±\pm 0.04.Comment: 11 pages, 9 figure

    Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    Full text link
    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication in A&

    SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system

    Full text link
    As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods ≃18.8\simeq 18.8 and ≃50.8\simeq 50.8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in the MCMC by modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094±0.0330.094 \pm 0.033 and 1.84±0.181.84 \pm 0.18 MJ_{\rm J}) and low orbital eccentricities (0.0493±0.00620.0493 \pm 0.0062 and 0.0323±0.00330.0323 \pm 0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b, although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable.Comment: 16 pages, of whom 5 of online material.12 figures, of whom 2 in the online material. 7 tables, of whom 4 in the online material. Published in A&

    SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Full text link
    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86±0.35 MJup2.86\pm0.35~{\rm M_{Jup}} and a radius of 1.13−0.18+0.26 RJup1.13^{+0.26}_{-0.18}~{\rm R_{Jup}}, and it orbits a G0, metallic ([Fe/H]=0.35±0.150.35\pm0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq=1000±45T_{eq}=1000 \pm 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82±0.52 MJup2.82\pm 0.52~{\rm M_{Jup}} and a radius of 1.45±0.16 RJup1.45\pm0.16~{\rm R_{Jup}}, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84±0.15 MJup0.84\pm0.15~{\rm M_{Jup}} and requires less extra-dissipation to explain its uncommonly large radius of 1.99±0.18 RJup1.99\pm0.18~{\rm R_{Jup}}. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46±0.17 M⊙1.46\pm0.17~M_{\odot} and 1.54±0.09 M⊙1.54 \pm 0.09~M_{\odot}, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system

    Trustworthy IoT: An evidence collection approach based on smart contracts

    Get PDF
    Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain

    Absolute masses and radii determination in multiplanetary systems without stellar models

    Get PDF
    The masses and radii of extrasolar planets are key observables for understanding their interior, formation and evolution. While transit photometry and Doppler spectroscopy are used to measure the radii and masses respectively of planets relative to those of their host star, estimates for the true values of these quantities rely on theoretical models of the host star which are known to suffer from systematic differences with observations. When a system is composed of more than two bodies, extra information is contained in the transit photometry and radial velocity data. Velocity information (finite speed-of-light, Doppler) is needed to break the Newtonian MR−3 degeneracy. We performed a photodynamical modelling of the two-planet transiting system Kepler-117 using all photometric and spectroscopic data available. We demonstrate how absolute masses and radii of single-star planetary systems can be obtained without resorting to stellar models. Limited by the precision of available radial velocities (38ms−1), we achieve accuracies of 20 per cent in the radii and 70 per cent in the masses, while simulated 1ms−1 precision radial velocities lower these to 1 per cent for the radii and 2 per cent for the masses. Since transiting multiplanet systems are common, this technique can be used to measure precisely the mass and radius of a large sample of stars and planets. We anticipate these measurements will become common when the TESS and PLATO mission provide high-precision light curves of a large sample of bright stars. These determinations will improve our knowledge about stars and planets, and provide strong constraints on theoretical model
    • 

    corecore