41 research outputs found

    Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin

    Get PDF
    Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours. Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs. Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin

    Efferent Projections of Prokineticin 2 Expressing Neurons in the Mouse Suprachiasmatic Nucleus

    Get PDF
    The suprachiasmatic nucleus (SCN) in the hypothalamus is the predominant circadian clock in mammals. To function as a pacemaker, the intrinsic timing signal from the SCN must be transmitted to different brain regions. Prokineticin 2 (PK2) is one of the candidate output molecules from the SCN. In this study, we investigated the efferent projections of PK2-expressing neurons in the SCN through a transgenic reporter approach. Using a bacterial artificial chromosome (BAC) transgenic mouse line, in which the enhanced green fluorescence protein (EGFP) reporter gene expression was driven by the PK2 promoter, we were able to obtain an efferent projections map from the EGFP-expressing neurons in the SCN. Our data revealed that EGFP-expressing neurons in the SCN, hence representing some of the PK2-expressing neurons, projected to many known SCN target areas, including the ventral lateral septum, medial preoptic area, subparaventricular zone, paraventricular nucleus, dorsomedial hypothalamic nucleus, lateral hypothalamic area and paraventricular thalamic nucleus. The efferent projections of PK2-expressing neurons supported the role of PK2 as an output molecule of the SCN

    An adaptive annual rhythm in the sex of first pigeon eggs

    Get PDF
    When the reproductive value of male and female offspring varies differentially, parents are predicted to adjust the sex ratio of their offspring to maximize their fitness (Trivers and Willard, Science 179:90–92, 1973). Two factors have been repeatedly linked to skews in avian offspring sex ratio. First, laying date can affect offspring sex ratio when the sexes differ in age of first reproduction, such that the more slowly maturing sex is overproduced early in the season. Second, position of the egg in the laying sequence of a clutch may affect sex ratio bias since manipulating the sex of the first eggs may be least costly to the mother. We studied both factors in two non-domesticated pigeon species. Both the Wood pigeon (Columba palumbus) and the Rock pigeon (Columba livia) have long breeding seasons and lay two-egg clutches. In the field, we determined the sex of Wood pigeon nestlings. In Rock pigeons, housed in captivity outdoors, we determined embryo sex after 3 days of incubation. On the basis of their sex-specific age of first reproduction, we predicted that males, maturing at older age than females, should be produced in majority early and females later in the year. This was confirmed for both species. The bias was restricted to first eggs. Rock pigeons produced clutches throughout the year and show that the sex of the first egg followed an annual cycle. To our knowledge, this study presents the first evidence of a full annual rhythm in adaptive sex allocation in birds. We suggest that this reflects an endogenous seasonal program in primary sex ratio controlled by a preovulatory mechanism

    Ethnic variation in validity of the estimated obesity prevalence using self-reported weight and height measurements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined ethnic differences between levels of body mass index (BMI) based on self-reported and measured body height and weight and the validity of self-reports used to estimate the prevalence of obesity (BMI≥30 kg/m<sup>2</sup>) in Turkish, Moroccan, and Dutch people in the Netherlands. Furthermore, we investigated whether BMI levels and the prevalence of obesity in Turkish and Moroccan people with incomplete self-reports (missing height or weight) differ from those with complete self-reports.</p> <p>Methods</p> <p>Data on self-reported and measured height and weight were collected in a population-based survey among 441 Dutch, 414 Turks and 344 Moroccans aged 18 to 69 years in Amsterdam, the Netherlands in 2004. BMI and obesity were calculated from self-reported and measured height and weight.</p> <p>Results</p> <p>The difference between measured and estimated BMI was larger in Turkish and Moroccan women than in Dutch women, which was explained by the higher BMI of the Turkish and Moroccan women. In men we found no ethnic differences between measured and estimated BMI. Sensitivity to detect obesity was low and specificity was high. In participants with available self-reported and measured height and weight, self-reports produced a similar underestimation of the obesity prevalence in all ethnic groups. However, many obese Turkish and Moroccan women had incomplete self-reports, missing height or weight, resulting in an additional underestimation of the prevalence of obesity. Among men (all ethnicities) and Dutch women, the availability of height or weight by self-report did not differ between obese and non obese participants.</p> <p>Conclusions</p> <p>BMI based on self-reports is underestimated more by Turkish and Moroccan women than Dutch women, which is explained by the higher BMI of Turkish and Moroccan women. Further, in women, ethnic differences in the estimation of obesity prevalence based on self-reports do exist and are due to incomplete self-reports in obese Turkish and Moroccan women. In men, ethnicity is not associated with discrepancies between levels of BMI and obesity prevalence based on measurements and self-reports. Hence, our results indicate that using measurements to accurately determine levels of BMI and obesity prevalence in public health research seems even more important in Turkish and Moroccan migrant women than in other populations.</p

    The Cortisol Response to Anticipated Intergroup Interactions Predicts Self-Reported Prejudice

    Get PDF
    Objectives: While prejudice has often been shown to be rooted in experiences of threat, the biological underpinnings of this threat–prejudice association have received less research attention. The present experiment aims to test whether activations of the hypothalamus-pituitary-adrenal (HPA) axis, due to anticipated interactions with out-group members, predict self-reported prejudice. Moreover, we explore potential moderators of this relationship (i.e., interpersonal similarity; subtle vs. blatant prejudice). Methodology/Principal findings: Participants anticipated an interaction with an out-group member who was similar or dissimilar to the self. To index HPA activation, cortisol responses to this event were measured. Then, subtle and blatant prejudices were measured via questionnaires. Findings indicated that only when people anticipated an interaction with an out-group member who was dissimilar to the self, their cortisol response to this event significantly predicted subtle (r =.50) and blatant (r =.53) prejudice. Conclusions: These findings indicate that prejudicial attitudes are linked to HPA-axis activity. Furthermore, when intergroup interactions are interpreted to be about individuals (and not so much about groups), experienced threat (or its biological substrate) is less likely to relate to prejudice. This conclusion is discussed in terms of recent insights from social neuroscience

    Farnesoid X Receptor (FXR) Activation and FXR Genetic Variation in Inflammatory Bowel Disease

    Get PDF
    Contains fulltext : 96924.pdf (publisher's version ) (Open Access)BACKGROUND: We previously showed that activation of the bile salt nuclear receptor Farnesoid X Receptor (FXR) protects against intestinal inflammation in mice. Reciprocally, these inflammatory mediators may decrease FXR activation. We investigated whether FXR activation is repressed in the ileum and colon of inflammatory bowel disease (IBD) patients in remission. Additionally, we evaluated whether genetic variation in FXR is associated with IBD. METHODS: mRNA expression of FXR and FXR target gene SHP was determined in ileal and colonic biopsies of patients with Crohn's colitis (n = 15) and ulcerative colitis (UC; n = 12), all in clinical remission, and healthy controls (n = 17). Seven common tagging SNPs and two functional SNPs in FXR were genotyped in 2355 Dutch IBD patients (1162 Crohn's disease (CD) and 1193 UC) and in 853 healthy controls. RESULTS: mRNA expression of SHP in the ileum is reduced in patients with Crohn's colitis but not in patients with UC compared to controls. mRNA expression of villus marker Villin was correlated with FXR and SHP in healthy controls, a correlation that was weaker in UC patients and absent in CD patients. None of the SNPs was associated with IBD, UC or CD, nor with clinical subgroups of CD. CONCLUSIONS: FXR activation in the ileum is decreased in patients with Crohn's colitis. This may be secondary to altered enterohepatic circulation of bile salts or transrepression by inflammatory signals but does not seem to be caused by the studied SNPs in FXR. Increasing FXR activity by synthetic FXR agonists may have benefit in CD patients

    Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy

    Get PDF
    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between minimal and maximal metabolic output

    Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia

    Get PDF
    Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 106MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE

    Biodiversity Trends along the Western European Margin

    Get PDF
    corecore