238 research outputs found

    D-brane orbiting NS5-branes

    Full text link
    We study real time dynamics of a Dp-brane orbiting a stack of NS5-branes. It is generally known that a BPS D-brane moving in the vicinity of NS5-branes becomes unstable due to the presence of tachyonic degree of freedom induced on the D-brane. Indeed, the D-brane necessarily falls into the fivebranes due to gravitational attraction and eventually collapses into a pressureless fluid. Such a decay of the D-brane is known to be closely related to the rolling tachyon problem. In this paper we show that in special cases the decay of D-brane caused by gravitational attraction can be avoided. Namely for certain values of energy and angular momentum the D-brane orbits around the fivebranes, maintaining certain distance from the fivebranes all the time, and the process of tachyon condensation is suppressed. We show that the tachyonic degree of freedom induced on such a D-brane really disappears and the brane returns to a stable D-brane.Comment: 12 pages, latex, added referenc

    Refined Cigar and Omega-deformed Conifold

    Get PDF
    Antoniadis et al proposed a relation between the Omega-deformation and refined correlation functions of the topological string theory. We investigate the proposal for the deformed conifold geometry from a non-compact Gepner model approach. The topological string theory on the deformed conifold has a dual description in terms of the c=1 non-critical string theory at the self-dual radius, and the Omega-deformation yields the radius deformation. We show that the refined correlation functions computed from the twisted SL(2,R)/U(1) Kazama-Suzuki coset model at level k=1 have direct c=1 non-critical string theory interpretations. After subtracting the leading singularity to procure the 1PI effective action, we obtain the agreement with the proposal.Comment: 15 pages, v2: reference added, v3: published versio

    Non Abelian Geometrical Tachyon

    Full text link
    We investigate the dynamics of a pair of coincident D5 branes in the background of kk NS5 branes. It has been proposed by Kutasov that the system with a single probing D-brane moving radially in this background is dual to the tachyonic DBI action for a non-BPS Dp brane. We extend this proposal to the non-abelian case and find that the duality still holds provided one promotes the radial direction to a matrix valued field associated with a non-abelian geometric tachyon and a particular parametrization for the transverse scalar fields is chosen. The equations of motion of a pair of coincident D5 branes moving in the NS5 background are determined. Analytic and numerical solutions for the pair are found in certain simplified cases in which the U(2) symmetry is broken to U(1)×U(1)U(1) \times U(1) corresponding to a small transverse separation of the pair. For certain range of parameters these solutions describe periodic motion of the centre of mass of the pair 'bouncing off' a finite sized throat whose minimum size is limited by the D5 branes separation.Comment: 18 pages, 2 figures, PdfLatex: references added.accepted for publication in JHE

    Thermodynamics of Superstring on Near-extremal NS5 and Effective Hagedorn Behavior

    Full text link
    We study the thermodynamical torus partition function of superstring on the near-extremal black NS5-brane background. The exact partition function has been computed with the helps of our previous works:[arXiv:1012.5721 [hep-th]], [arXiv:1109.3365 [hep-th]], and naturally decomposed into two parts. The first part is contributed from strings freely propagating in the asymptotic region, which are identified as the superstring gas at the Hawking temperature on the linear-dilaton background. The second part includes the contribution localized around the `tip of cigar', which characterizes the non-extremality. Remarkably, the latter part includes massless excitations with non-vanishing thermal winding, which signifies that the Hagedorn-like behavior effectively appears, even though the Hawking temperature is much lower than the Hagedorn temperature. We also explore the high-temperature backgrounds defined by the orbifolding along the Euclidean time direction. In those cases, the thermal winding modes localized around the tip are found to be tachyonic, reflecting the singularities of Euclidean backgrounds caused by orbifolding.Comment: 1+29 pages, no figure; v2 the footnote 1 is enhanced, to appear in JHE

    Measurement of the Extragalactic Background Light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1

    Get PDF
    We present a measurement of the extragalactic background light (EBL) based on a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the redshift range z = 0.03 to 0.944, obtained by the MAGIC telescopes and Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning the ultraviolet, visible and infrared bands. Major contributors to the EBL are the light emitted by stars through the history of the universe, and the fraction of it which was absorbed by dust in galaxies and re-emitted at longer wavelengths. The EBL can be studied indirectly through its effect on very-high energy photons that are emitted by cosmic sources and absorbed via photon-photon interactions during their propagation across cosmological distances. We obtain estimates of the EBL density in good agreement with state-of-the-art models of the EBL production and evolution. The 1-sigma upper bounds, including systematic uncertainties, are between 13% and 23% above the nominal EBL density in the models. No anomaly in the expected transparency of the universe to gamma rays is observed in any range of optical depth.We also perform a wavelength-resolved EBL determination, which results in a hint of an excess of EBL in the 0.18 - 0.62 μ\mum range relative to the studied models, yet compatible with them within systematics.Comment: Accepted by MNRA

    Study of the GeV to TeV morphology of the γ Cygni SNR (G 78.2+2.1) with MAGIC and Fermi-LAT: Evidence for cosmic ray escape

    Get PDF
    Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR. Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR. © 2023 EDP Sciences. All rights reserved

    Follow-up observations of GW170817 with the MAGIC telescopes

    Get PDF
    The discovery of the electromagnetic counterpart AT2017gfo and the GRB 170817A, associated to the binary neutron star merger GW170817, was one of the major advances in the study of gamma-ray bursts (GRBs) and the hallmark of the multi-messenger astronomy with gravitational waves. Another breakthrough in GRB physics is represented by the discovery of the highly energetic, teraelectronvolt (TeV) component in the GRB 190114C, possibly an universal component in all GRBs. This conclusion is also suggested by the hint of TeV emission in the short GRB 160821B and a few more events reported in the literature. The missing observational piece is the joint detection of TeV emission and gravitational waves from a short GRB and its progenitor. MAGIC observed the counterpart AT2017gfo as soon as the visibility conditions allowed it, namely from January to June 2018. These observations correspond to the maximum flux level observed in the radio and X-ray bands. The upper limits derived from TeV observations are compared with the modelling of the late non-thermal emission using the multi-frequency SED

    First detection of VHE gamma-ray emission from TXS 1515-273, study of its X-ray variability and spectral energy distribution

    Get PDF
    We report here on the first multi-wavelength (MWL) campaign on the blazar TXS 1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma rays (VHE). Up until now, this blazar had not been the subject of any detailed MWL observations. It has a rather hard photon index at GeV energies and was considered a candidate extreme high-synchrotronpeaked source. MAGIC observations resulted in the first-time detection of the source in VHE with a statistical significance of 7.6σ\sigma. The average integral VHE flux of the source is 6 ±\pm 1% of the Crab nebula flux above 400 GeV. X-ray coverage was provided by Swift-XRT, XMMNewton, and NuSTAR. The long continuous X-ray observations were separated by \sim 9 h, both showing clear hour scale flares. In the XMM-Newton data, both the rise and decay timescales are longer in the soft X-ray than in the hard X-ray band, indicating the presence of a particle cooling regime. The X-ray variability timescales were used to constrain the size of the emission region and the strength of the magnetic field. The data allowed us to determine the synchrotron peak frequency and classify the source as a flaring high, but not extreme, synchrotron peaked object. Considering the constraints and variability patterns from the X-ray data, we model the broad-band spectral energy distribution. We applied a simple one-zone model, which could not reproduce the radio emission and the shape of the optical emission, and a two-component leptonic model with two interacting components, enabling us to reproduce the emission from radio to VHE band

    Monitoring of the radio galaxy M87 during a low emission state from 2012 to 2015 with MAGIC

    Get PDF
    M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100GeV to 10TeV with a simple power law with a photon index of (-2.41 ±\pm 0.07), while the integral flux above 300GeV is (1.44±0.13)×1012cm2s1(1.44 \pm 0.13) \times 10^{-12} cm^{-2} s^{-1}. During the campaign between 2012 and 2015, M87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M87 campaign is consistent with a constant flux with some hint of variability (3σ\sim3\sigma) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region

    MAGIC observations of the nearby short GRB 160821B

    Get PDF
    Gamma-ray bursts (GRBs), the most luminous explosions in the universe, have at least two types known. One of them, short GRBs, have been thought to originate from binary neutron star (BNS) mergers. The discovery of GW170817 together with a GRB was the first and only direct proof of the hypothesis, and thus the properties of the short GRBs are poorly known yet. Aiming to clarify the underlying physical mechanisms of the short GRBs, we analyzed GRB 160821B, one of the nearest short GRBs known at z=0.162, observed with the MAGIC telescopes. A hint of a gamma-ray signal is found above 0.5 TeV at a significance of >3 sigma during observations from 24 seconds until 4 hours after the burst, as presented in the past. Recently, multi-wavelength data of its afterglow emission revealed a well-sampled kilonova component from a BNS merger, and the importance of GRB 160821B increased concerning GRB-GW studies. Accordingly, we investigated GRB afterglow models again, using the revised multi-wavelength data. We found that the straightforward interpretation with one-zone synchrotron self-Compton model from the external forward shock is in tension with the observed TeV flux, contradicting the suggestion reported previously. In this contribution we discuss the implication from the TeV observation, including alternative scenarios where the TeV emission can be enhanced. We also give a brief outlook of future GeV-TeV observations of short GRBs with imaging atmospheric Cherenkov telescopes, which could shed more light on the GRB-BNS merger relation
    corecore