6,979 research outputs found

    Does expanding primary healthcare improve hospital efficiency? Evidence from a panel analysis of avoidable hospitalisations in 5506 municipalities in Brazil, 2000-2014.

    Get PDF
    BACKGROUND: Hospitals account for the major share of health expenditure. Primary healthcare may improve efficiency at the hospital level by reducing avoidable admissions. We examined whether rapid expansion of primary healthcare in the context of Brazil's Family Health Strategy (FHS) was associated with a reduction in avoidable hospitalisations. METHODS: We constructed panel data for 5506 municipalities over 2000-2014. Our primary outcome was the rate of avoidable hospitalisations, defined with reference to the official list of ambulatory care sensitive conditions (ACSC). The exposure variable was FHS coverage. We used first-difference models at the municipality level, controlling for municipality characteristics and confounding trends. We ran similar models for each of the 19 diseases in the list of ACSCs. FINDINGS: FHS coverage expanded from 14% to 64% of the population between 2000 and 2014. Over the same period, the rate of avoidable hospitalisations fell from 17 to 10 per 1000 population. Results from the econometric analysis show that the FHS at full coverage was associated with an increase of 0.6 (95% CI 0.3 to 0.9; p<0.001) in the rate of avoidable hospital admissions. Expansion of the FHS was associated with an increase of 866 (95% CI 762 to 970; p<0.001) in the rate of primary care consultations. The FHS was not significantly associated with a reduction in hospitalisations for any of the 19 conditions. CONCLUSIONS: While high-quality primary healthcare can deliver considerable health benefits to the population, it may not always be effective in addressing inefficiencies at the hospital level due to avoidable admissions

    Towards Structure-Property-Function Relationships for Eumelanin

    Full text link
    We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins - key functional bio-macromolecular systems responsible for photo-protection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.Comment: 19 pages, 8 figures, Invited highlight article for Soft Matte

    Delivering reform in English healthcare: an ideational perspective

    Get PDF
    A variety of perspectives has been put forward to understand reform across healthcare systems. Recently, some have called for these perspectives to give greater recognition to the role of ideational processes. The purpose of this article is to present an ideational approach to understanding the delivery of healthcare reform. It draws on a case of English healthcare reform – the Next Stage Review led by Lord Darzi – to show how the delivery of its reform proposals was associated with four ideational frames. These frames built on the idea of “progress” in responding to existing problems; the idea of “prevailing policy” in forming part of a bricolage of ideas within institutional contexts; the idea of “prescription” as top-down structural change at odds with local contexts; and the idea of “professional disputes” in challenging the notion of clinical engagement across professional groups. The article discusses the implications of these ideas in furthering our understanding of policy change, conflict and continuity across healthcare settings

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    Application of contemporary methods for the use of international data in national genetic evaluations

    Get PDF
    Increased international trade of genetic material from dairy cattle requires genetic evaluations across countries. Methods are discussed for comparing genetic evaluations of bulls computed in different countries. A system that combines information from several countries and produces routine international evaluations of dairy bulls is described, and possible ways of utilizing such international information in national breeding programs are presented. Important issues for international genetic evaluations are the estimation of genetic parameters within and across countries and the impact of imported bull evaluations on international rankings. Both issues are discussed in this article in view of recent research findings and potential future applications. Optimally, routine systems for international evaluation of the future will consider all economically important traits and serve different and well-defined breeding goals.</p

    Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees

    Get PDF
    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests

    Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD

    Get PDF
    Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines
    corecore