270 research outputs found
Protein folding and quinary interactions: creating cellular organisation through functional disorder
The marginal stability of globular proteins in the cell is determined by the balance between excluded volume effect and soft interactions. Quinary interactions are a type of soft interactions involved in intracellular organisation and known to have stabilising or destabilising effects on globular proteins. Recent studies suggest that globular proteins have structural flexibility, exhibiting more than one functional state. Here, we propose that the quinary-induced destabilisation can be sufficient to produce functional partially unfolded states of globular proteins. The biological relevance of this mechanism is explored, involving intracellular phase separation and regulatory stress response mechanisms.The authors thank Hernani Geros for useful comments on the manuscript and Michael Smith for language advices. In addition, JCM and SR acknowledge the Foundation for Science and Technology, FCT- Portugal, for financial support through the Centre of Chemistry of the University of Minho (CQ-UM) (projects UID/QUI/00686/2013 and UID/QUI/00686/2016). SE acknowledges funding from the Cluster of Excellence RESOLV (EXC 1069) funded by the German Research Foundation (DFG) and the Human Frontier Science Program Organization Research Grant (Project: RGP0022/2017)
Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases
Clinical Reasoning and Case-Based Decision Making: The Fundamental Challenge to Veterinary Educators
TorsinA and the TorsinA-Interacting Protein Printor Have No Impact on Endoplasmic Reticulum Stress or Protein Trafficking in Yeast
Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available.Howard Hughes Medical InstituteBachmann-Strauss Dystonia and Parkinson Foundatio
Impact of translational error-induced and error-free misfolding on the rate of protein evolution
Theoretical calculations suggest that, in addition to translational error-induced protein misfolding, a non-negligible fraction of misfolded proteins are error free.We propose that the anticorrelation between the expression level of a protein and its rate of sequence evolution be explained by an overarching protein-misfolding-avoidance hypothesis that includes selection against both error-induced and error-free protein misfolding, and verify this model by a molecular-level evolutionary simulation.We provide strong empirical evidence for the protein-misfolding-avoidance hypothesis, including a positive correlation between protein expression level and stability, enrichment of misfolding-minimizing codons and amino acids in highly expressed genes, and stronger evolutionary conservation of residues in which nonsynonymous changes are more likely to increase protein misfolding
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
A Genetic Analysis of the Relationship Between Life-history Variation and Heat-shock Tolerance in Drosophila buzzatii
Although exposure to environmental stress is common in most populations, and the physiological effects of stress on individuals are well studied, the evolutionary importance of stress to populations is not well understood. To address multitrait responses to environmental change and potential constraints on character evolution, we analysed, in 100 isofemale lines of Drosophila buzzatii, the genetic relationships between resistance to a short heat shock and several life-history traits: survival in benign conditions, larval developmental time, fecundity and longevity. Estimates of heritability of larval thermotolerance were low, but significant, and all life-history traits varied significantly among isofemale lines. Several of these traits covaried significantly. Most correlations indicated positive life-history relationships, but males and females from lines where female fecundity was higher developed more slowly in the absence of stress, which is a negative life-history relationship. The stress reduced or negated many trait associations, and showed one additional relationship; more larvae from lines that developed fast at 25°C survived to adult after stress than did larvae from slow developing lines. These shifts in fitness relationships, when a single stress bout is applied, suggest that even small increases in environmental stress can have profound effects on evolutionary relationships among life-history traits
Systematic inclusion of mandatory interprofessional education in health professions curricula at Gunma University: a report of student self-assessment in a nine-year implementation
<p>Abstract</p> <p>Background</p> <p>The mandatory interprofessional education programme at Gunma University was initiated in 1999. This paper is a statistical evaluation of the programme from 1999 to 2007.</p> <p>Methods</p> <p>A questionnaire of 10 items to assess the achievement levels of the programme, which was developed independently of other assessment systems published previously, was distributed, as well as two or three open-ended questions to be answered at the end of each annual module. A multivariate analysis of variance model was used, and the factor analysis of the responses was performed with varimax rotation.</p> <p>Results</p> <p>Over all, 1418 respondents of a possible 1629 students completed the survey, for a total response rate of 87.1%. Cronbach's alpha of 10 items was 0.793, revealing high internal consistency. Our original questionnaire was categorized into four subscales as follows: "Role and responsibilities", "Teamwork and collaboration", "Structure and function of training facilities", and "Professional identity". Students in the Department of Occupational Therapy reached a relatively lower level of achievement. In the replies to the open-ended questions, requests for the participation of the medical students were repeated throughout the evaluation period.</p> <p>Conclusion</p> <p>The present four subscales measure "understanding", and may take into account the development of interprofessional education programmes with clinical training in various facilities. The content and quality of clinical training subjects may be remarkably dependent on training facilities, suggesting the importance of full consultation mechanisms in the local network with the relevant educational institutes for medicine, health care and welfare.</p
The Schizosaccharomyces pombe Hsp104 Disaggregase Is Unable to Propagate the [PSI+] Prion
The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI+] prion of Saccharomyces cerevisiae does not propagate in Δhsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104+ is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI+] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Δhsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI+]. Strikingly, [PSI+] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI+] prion
Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane
BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins
- …
