50 research outputs found

    Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant

    Get PDF
    Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy

    Human predecidual stromal cells are mesenchymal stromal/stem cells and have a therapeutic effect in an immune-based mouse model of recurrent spontaneous abortion

    Get PDF
    Human decidual stromal cells (DSCs) are involved in the maintenance and development of pregnancy, in which they play a key role in the induction of immunological maternal–fetal tolerance. Precursors of DSCs (preDSCs) are located around the vessels, and based on their antigen phenotype, previous studies suggested a relationship between preDSCs and mesenchymal stromal/stem cells (MSCs). This work aimed to further elucidate the MSC characteristics of preDSCs. Under the effect of P4 and cAMP, the preDSC lines and clones decidualized in vitro: the cells became rounder and secreted PRL, a marker of physiological decidualization. PreDSC lines and clones also exhibited MSC characteristics. They differentiated into adipocytes, osteoblasts, and chondrocytes, and preDSC lines expressed stem cell markers OCT- 4, NANOG, and ABCG2; exhibited a cloning efficiency of 4 to 15%; significantly reduced the embryo resorption rate (P < 0.001) in the mouse model of abortion; and survived for prolonged periods in immunocompetent mice. The fact that 3 preDSC clones underwent both decidualization and mesenchymal differentiation shows that the same type of cell exhibited both DSC and MSC characteristics. Together, our results confirm that preDSCs are decidual MSCs and suggest that these cells are involved in the mechanisms of maternal–fetal immune toleranceThis work was supported by the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016, ISCIII-Subdirección General de Evaluación y Fomento de la Investigación, the Ministerio de Economía y Competitividad, Spain (Grant PI16/01642) and European Regional Development Fund (ERDF/ FEDER funding), the European Community, and the Cátedra de Investigación Anto nio Chamorro–Alejandro Otero, Universidad de Granada (CACH2017-1)

    Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging

    Get PDF
    In the last decade, PET-only systems have been phased out and replaced with PET-CT systems. This merger of a functional and anatomical imaging modality turned out to be extremely useful in clinical practice. Currently, PET-CT is a major diagnostic tool in oncology. At the dawn of the merger of MRI and PET, another breakthrough in clinical imaging is expected. The combination of these imaging modalities is challenging, but has particular features such as imaging biological processes at the same time in specific body locations

    A reference human induced pluripotent stem cell line for large-scale collaborative studies

    Get PDF
    Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field

    A Closed-Form, Finite-State Model for the Unsteady Aerodynamics of Rotors

    No full text
    corecore