3,522 research outputs found

    Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy

    No full text
    Aims: Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin-cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multi-functional actin-binding protein, whose role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodeling. Methods and Results: Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signaling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion: Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodeling, and silencing of profilin attenuates the hypertrophic response

    Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved

    Get PDF
    Background: Peak first derivative of femoral artery pressure (arterial dP/dt max) derived from fluid-filled catheter remains questionable to assess left ventricular (LV) contractility during shock. The aim of this study was to test if arterial dP/dt maxis reliable for assessing LV contractility during various hemodynamic conditions such as endotoxin-induced shock and catecholamine infusion.Methods: Ventricular pressure-volume data obtained with a conductance catheter and invasive arterial pressure obtained with a fluid-filled catheter were continuously recorded in 6 anaesthetized and mechanically ventilated pigs. After a stabilization period, endotoxin was infused to induce shock. Catecholamines were transiently administrated during shock. Arterial dP/dt maxwas compared to end-systolic elastance (Ees), the gold standard method for assessing LV contractility.Results: Endotoxin-induced shock and catecholamine infusion lead to significant variations in LV contractility. Overall, significant correlation (r = 0.51; p < 0.001) but low agreement between the two methods were observed. However, a far better correlation with a good agreement were observed when positive-pressure ventilation induced an arterial pulse pressure variation (PPV) ≤ 11% (r = 0.77; p < 0.001).Conclusion: While arterial dP/dt maxand Ees were significantly correlated during various hemodynamic conditions, arterial dP/dt maxwas more accurate for assessing LV contractility when adequate vascular filling, defined as PPV ≤ 11%, was achieved. © 2012 Morimont et al; licensee BioMed Central Ltd

    The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults

    Get PDF
    © 2015 Kass and Poeira; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Magnesium supplementation has previously shown reductions in blood pressure of up to 12 mmHg. A positive relationship between magnesium supplementation and performance gains in resistance exercise has also been seen. However, no previous studies have investigated loading strategies to optimise response. The aim of this study was to assess the effect of oral magnesium supplementation on resistance exercise and vascular response after intense exercise for an acute and chronic loading strategy on a 2-day repeat protocol. Methods: The study was a randomised, double-blind, cross-over design, placebo controlled 2 day repeat measure protocol (n = 13). Intense exercise (40 km time trial) was followed by bench press at 80% 1RM to exhaustion, with blood pressure and total peripheral resistance (TPR) recorded. 300 mg/d elemental magnesium was supplemented for either a 1 (A) or 4 (Chr) week loading strategy. Food diaries were recorded. Results: Dietary magnesium intake was above the Reference Nutrient Intake (RNI) for all groups. Bench press showed a significant increase of 17.7% (p = 0.031) for A on day 1. On day 2 A showed no decrease in performance whilst Chr showed a 32.1% decrease. On day 2 post-exercise systolic blood pressure (SBP) was significantly lower in both A (p = 0.0.47) and Chr (p = 0.016) groups. Diastolic blood pressure (DBP) showed significant decreases on day 2 solely for A (p = 0.047) with no changes in the Chr. TPR reduced for A on days 1 and 2 (p = 0.031) with Chr showing an increase on day 1 (p = 0.008) and no change on day 2. Conclusion: There was no cumulative effect of Chr supplementation compared to A. A group showed improvement for bench press concurring with previous research which was not seen in Chr. On day 2 A showed a small non-significant increase but not a decrement as expected with Chr showing a decrease. DBP showed reductions in both Chr and A loading, agreeing with previous literature. This is suggestive of a different mechanism for BP reduction than for muscular strength. TPR showed greater reductions with A than Chr, which would not be expected as both interventions had reductions in BP, which is associated with TPR.Peer reviewedFinal Published versio

    Cytokine Combination Therapy with Erythropoietin and Granulocyte Colony Stimulating Factor in a Porcine Model of Acute Myocardial Infarction

    Get PDF
    PurposeErythropoietin (EPO) and granulocyte colony stimulating factor (GCSF) have generated interest as novel therapies after myocardial infarction (MI), but the effect of combination therapy has not been studied in the large animal model. We investigated the impact of prolonged combination therapy with EPO and GCSF on cardiac function, infarct size, and vascular density after MI in a porcine model.MethodsMI was induced in pigs by a 90&nbsp;min balloon occlusion of the left anterior descending coronary artery. 16 animals were treated with EPO+GCSF, or saline (control group). Cardiac function was assessed by echocardiography and pressure-volume measurements at baseline, 1 and 6&nbsp;weeks post-MI. Histopathology was performed 6&nbsp;weeks post-MI.ResultsAt week 6, EPO+GCSF therapy stabilized left ventricular ejection fraction, (41 ± 1% vs. 33 ± 1%, p &lt; 0.01) and improved diastolic function compared to the control group. Histopathology revealed increased areas of viable myocardium and vascular density in the EPO+GCSF therapy, compared to the control. Despite these encouraging results, in a historical analysis comparing combination therapy with monotherapy with EPO or GCSF, there were no significant additive benefits in the LVEF and volumes overtime using the combination therapy.ConclusionOur findings indicate that EPO+GCSF combination therapy promotes stabilization of cardiac function after acute MI. However, combination therapy does not seem to be superior to monotherapy with either EPO or GCSF

    K201 (JTV-519) alters the spatiotemporal properties of diastolic Ca2+ release and the associated diastolic contraction during β-adrenergic stimulation in rat ventricular cardiomyocytes

    Get PDF
    K201 has previously been shown to reduce diastolic contractions in vivo during β-adrenergic stimulation and elevated extracellular calcium concentration ([Ca2+]o). The present study characterised the effect of K201 on electrically stimulated and spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release and contractile events in isolated rat cardiomyocytes during β-adrenergic stimulation and elevated [Ca2+]o. Parallel experiments using confocal microscopy examined spontaneous diastolic Ca2+ release events at an enhanced spatiotemporal resolution. 1.0 μmol/L K201 in the presence of 150 nmol/L isoproterenol (ISO) and 4.75 mmol/L [Ca2+]o significantly decreased the amplitude of diastolic contractions to ~16% of control levels. The stimulated free Ca2+ transient amplitude was significantly reduced, but stimulated cell shortening was not significantly altered. When intracellular buffering was taken into account, K201 led to an increase in action potential-induced SR Ca2+ release. Myofilament sensitivity to Ca2+ was not changed by K201. Confocal microscopy revealed diastolic events composed of multiple Ca2+ waves (2–3) originating at various points along the cardiomyocyte length during each diastolic period. 1.0 μmol/L K201 significantly reduced the (a) frequency of diastolic events and (b) initiation points/diastolic interval in the remaining diastolic events to 61% and 71% of control levels respectively. 1.0 μmol/L K201 can reduce the probability of spontaneous diastolic Ca2+ release and their associated contractions which may limit the propensity for the contractile dysfunction observed in vivo

    Cardiac MR Elastography: Comparison with left ventricular pressure measurement

    Get PDF
    Purpose of the Study: To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model. Methods: Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined. Results: A relationship between MRE and LV pressure was observed in all three animals (R-square [greater than or equal to] 0.76). No correlation was observed between MRE and LV diameter (R-square [less than or equal to] 0.15). Instead, shear wave amplitudes decreased 102 +/- 58 ms earlier than LV diameters at systole and amplitudes increased 175 +/- 40 ms before LV dilatation at diastole. Amplitude ratios between diastole and systole ranged from 2.0 to 2.8, corresponding to LV pressure differences of 60 to 73 mmHg. Conclusion: Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart

    Validated Intraclass Correlation Statistics to Test Item Performance Models

    Get PDF
    A new method, with an application program in Matlab code, is proposed for testing item performance models on empirical databases. This method uses data intraclass correlation statistics as expected correlations to which one compares simple functions of correlations between model predictions and observed item performance. The method rests on a data population model whose validity for the considered data is suitably tested, and has been verified for three behavioural measure databases. Contrarily to usual model selection criteria, this method provides an effective way of testing under-fitting and over-fitting, answering the usually neglected question "does this model suitably account for these data?

    When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it

    Get PDF
    Impact of variability in the measured parameter is rarely considered in designing clinical protocols for optimization of atrioventricular (AV) or interventricular (VV) delay of cardiac resynchronization therapy (CRT). In this article, we approach this question quantitatively using mathematical simulation in which the true optimum is known and examine practical implications using some real measurements. We calculated the performance of any optimization process that selects the pacing setting which maximizes an underlying signal, such as flow or pressure, in the presence of overlying random variability (noise). If signal and noise are of equal size, for a 5-choice optimization (60, 100, 140, 180, 220 ms), replicate AV delay optima are rarely identical but rather scattered with a standard deviation of 45 ms. This scatter was overwhelmingly determined (ρ = −0.975, P < 0.001) by Information Content, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}SignalSignal+Noise {\frac{\text{Signal}}{{{\text{Signal}} + {\text{Noise}}}}} \end{document}, an expression of signal-to-noise ratio. Averaging multiple replicates improves information content. In real clinical data, at resting, heart rate information content is often only 0.2–0.3; elevated pacing rates can raise information content above 0.5. Low information content (e.g. <0.5) causes gross overestimation of optimization-induced increment in VTI, high false-positive appearance of change in optimum between visits and very wide confidence intervals of individual patient optimum. AV and VV optimization by selecting the setting showing maximum cardiac function can only be accurate if information content is high. Simple steps to reduce noise such as averaging multiple replicates, or to increase signal such as increasing heart rate, can improve information content, and therefore viability, of any optimization process

    A Comparison of Online versus On-site Training in Health Research Methodology: A Randomized Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Distance learning may be useful for building health research capacity. However, evidence that it can improve knowledge and skills in health research, particularly in resource-poor settings, is limited. We compared the impact and acceptability of teaching two distinct content areas, Biostatistics and Research Ethics, through either on-line distance learning format or traditional on-site training, in a randomized study in India. Our objective was to determine whether on-line courses in Biostatistics and Research Ethics could achieve similar improvements in knowledge, as traditional on-site, classroom-based courses.</p> <p>Methods</p> <p><it>Subjects: </it>Volunteer Indian scientists were randomly assigned to one of two arms.</p> <p><it>Intervention: </it>Students in Arm 1 attended a 3.5-day on-site course in Biostatistics and completed a 3.5-week on-line course in Research Ethics. Students in Arm 2 attended a 3.5-week on-line course in Biostatistics and 3.5-day on-site course in Research Ethics. For the two course formats, learning objectives, course contents and knowledge tests were identical.</p> <p><it>Main Outcome Measures: </it>Improvement in knowledge immediately and 3-months after course completion, compared to baseline.</p> <p>Results</p> <p>Baseline characteristics were similar in both arms (n = 29 each). Median knowledge score for Biostatistics increased from a baseline of 49% to 64% (p < 0.001) 3 months after the on-site course, and from 48% to 63% (p = 0.009) after the on-line course. For the on-site Research Ethics course, median score increased from 69% to 83% (p = 0.005), and for the on-line Research Ethics course from 62% to 80% (p < 0.001). Three months after the course, median gains in knowledge scores remained similar for the on-site and on-line platforms for both Biostatistics (16% vs. 12%; p = 0.59) and Research Ethics (17% vs. 13%; p = 0.14).</p> <p>Conclusion</p> <p>On-line and on-site training formats led to marked and similar improvements of knowledge in Biostatistics and Research Ethics. This, combined with logistical and cost advantages of on-line training, may make on-line courses particularly useful for expanding health research capacity in resource-limited settings.</p
    corecore