88 research outputs found

    Bivalirudin versus unfractionated heparin: a meta-analysis of patients receiving percutaneous coronary intervention for acute coronary syndromes

    Get PDF
    OBJECTIVE: Acute coronary syndrome (ACS) encompasses ST segment elevation myocardial infarction (STEMI), with generally high thrombus burden and non-ST segment elevation ACS (NSTE-ACS), with lower thrombus burden. In the setting of percutaneous coronary intervention (PCI) for ACS, bivalirudin appears superior to unfractionated heparin (UFH), driven by reduced major bleeding. Recent trials suggest that the benefit of bivalirudin may be reduced with use of transradial access and evolution in antiplatelet therapy. Moreover, a differential role of bivalirudin in ACS cohorts is unknown. METHODS: A meta-analysis of randomised trials comparing bivalirudin and UFH in patients with ACS receiving PCI, with separate analyses in STEMI and NSTE-ACS groups. Overall estimates of treatment effect were calculated with random-effects model. RESULTS: In 5 trials of STEMI (10 358 patients), bivalirudin increased the risk of acute stent thrombosis (ST) (OR 3.62; CI 1.95 to 6.74; p<0.0001) compared with UFH. Bivalirudin reduced the risk of major bleeding only when compared with UFH plus planned glycoprotein IIb/IIIa inhibitors (GPI) (OR 0.49; CI 0.36 to 0.67; p<0.00001). In 14 NSTE-ACS trials (25 238 patients), there was no difference between bivalirudin and UFH in death, myocardial infarction or ST. However, bivalirudin reduced the risk of major bleeding compared with UFH plus planned GPI (OR 0.52; CI 0.43 to 0.62; p<0.00001), or UFH plus provisional GPI (OR 0.68; CI 0.46 to 1.01; p=0.05). The reduction in major bleeding with bivalirudin was not related to vascular access site. CONCLUSIONS: Bivalirudin increases the risk of acute ST in STEMI, but may confer an advantage over UFH in NSTE-ACS while undergoing PCI, reducing major bleeding without an increase in ST

    Correction to: RIC in COVID-19—a Clinical Trial to Investigate Whether Remote Ischemic Conditioning (RIC) Can Prevent Deterioration to Critical Care in Patients with COVID-19

    Get PDF
    Purpose: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. “RIC in COVID-19” is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. Methods: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. Conclusions: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. Trial Registration: NCT04699227, registered January 7th, 2021

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Assessment of endogenous fibrinolysis in clinical using novel tests - Ready for clinical roll-out?

    Get PDF
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.The occurrence of thrombotic complications, which can result in excess mortality and morbidity, represent an imbalance between the pro-thrombotic and fibrinolytic equilibrium.The mainstay treatment of these complications involves the use of antithrombotic agents but despite advances in pharmacotherapy, there remains a significant proportion of patients who continue to remain at risk.Endogenous fibrinolysis is a physiological counter-measure against lasting thrombosis and may be measured using several techniques to identify higher risk patients who may benefit from more aggressive pharmacotherapy. However, the assessment of the fibrinolytic systemis not yet accepted into routine clinical practice.In this review, we will revisit the different methods of assessing endogenous fibrinolysis (factorial assays, turbidimetric lysis assays, viscoelastic and the global thrombosis tests), including the strengths, limitations, correlation to clinical outcomes of each method and howwe might integrate the assessment of endogenous fibrinolysis into clinical practice in the future.Peer reviewedFinal Published versio

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3&nbsp;years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0&nbsp;years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Anticoagulant selection in relation to the SAMe-TT2R2 score in patients with atrial fibrillation. the GLORIA-AF registry

    Get PDF
    Aim: The SAMe-TT2R2 score helps identify patients with atrial fibrillation (AF) likely to have poor anticoagulation control during anticoagulation with vitamin K antagonists (VKA) and those with scores &gt;2 might be better managed with a target-specific oral anticoagulant (NOAC). We hypothesized that in clinical practice, VKAs may be prescribed less frequently to patients with AF and SAMe-TT2R2 scores &gt;2 than to patients with lower scores. Methods and results: We analyzed the Phase III dataset of the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF), a large, global, prospective global registry of patients with newly diagnosed AF and ≥1 stroke risk factor. We compared baseline clinical characteristics and antithrombotic prescriptions to determine the probability of the VKA prescription among anticoagulated patients with the baseline SAMe-TT2R2 score &gt;2 and ≤ 2. Among 17,465 anticoagulated patients with AF, 4,828 (27.6%) patients were prescribed VKA and 12,637 (72.4%) patients an NOAC: 11,884 (68.0%) patients had SAMe-TT2R2 scores 0-2 and 5,581 (32.0%) patients had scores &gt;2. The proportion of patients prescribed VKA was 28.0% among patients with SAMe-TT2R2 scores &gt;2 and 27.5% in those with scores ≤2. Conclusions: The lack of a clear association between the SAMe-TT2R2 score and anticoagulant selection may be attributed to the relative efficacy and safety profiles between NOACs and VKAs as well as to the absence of trial evidence that an SAMe-TT2R2-guided strategy for the selection of the type of anticoagulation in NVAF patients has an impact on clinical outcomes of efficacy and safety. The latter hypothesis is currently being tested in a randomized controlled trial. Clinical trial registration: URL: https://www.clinicaltrials.gov//Unique identifier: NCT01937377, NCT01468701, and NCT01671007

    Maternal smoking during pregnancy and offspring overweight : is there a dose–response relationship? An individual patient data meta-analysis

    Get PDF
    We want to thank the funders of the individual studies: the UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol, the Danish National Research Foundation, Pharmacy Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation, the US NICHD (contracts no. 1-HD-4-2803 and no. 1-HD-1-3127, R01 HD HD034568), the NHMRC, the CNPq (Portuguese acronym for the National Research Council—grant 523474/96-2) and FAPESP (Portuguese acronym for the São Paulo State Research Council—grant 00/0908-7). We would like to thank the participating families of all studies for the use of data. For the ASPAC study, we want to thank the midwives for their help in recruiting families, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This work was supported by the Deutschen Forschungsgesellschaft (German Research Foundation, DFG) [KR 1926/9-1, KU1443/4-1]. Dr. Gilman’s contribution was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.Peer reviewedPostprin

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore