110 research outputs found

    Face Coding Is Bilateral in the Female Brain

    Get PDF
    Background: It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. Methodology/Principal Findings: In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. Conclusions/Significance: LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to fac

    Post-acute blood biomarkers and disease progression in traumatic brain injury

    Get PDF
    There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI.Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects.Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels.GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.</p

    A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids

    Get PDF
    The nature of the constitutive contact force law utilized to describe contact-impact events in solid contact interfaces plays a key role in predicting the response of multibody mechanical systems and in the simulation of engineering applications. The goal of this work is to present a comparative study on the most relevant existing viscoelastic contact force models. In the sequel of this process, their fundamental characteristics are examined and their performances evaluated. Models developed based on the Hertz contact theory and augmented with a damping term to accommodate the dissipation of energy during the impact process, which typically is a function of the coefficient of restitution between the contacting solids, are considered in this study. In particular, the identified contact force models are compared in the present study for simple solid impact problems with the sole purpose of comparing the performance of the various models and examining the corresponding system behavior. The outcomes indicate that the prediction of the dynamic behavior of contacting solids strongly depends on the selection of the contact force model.Fundação para a CiΓͺncia e a Tecnologia (FCT

    Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition

    Get PDF
    BACKGROUND: The RTOG 94-13 trial has provided evidence that patients with high risk prostate cancer benefit from an additional radiotherapy to the pelvic nodes combined with concomitant hormonal ablation. Since lymphatic drainage of the prostate is highly variable, the optimal target volume definition for the pelvic lymph nodes is problematic. To overcome this limitation, we tested the feasibility of an intensity modulated radiation therapy (IMRT) protocol, taking under consideration the individual pelvic sentinel node drainage pattern by SPECT functional imaging. METHODS: Patients with high risk prostate cancer were included. Sentinel nodes (SN) were localised 1.5–3 hours after injection of 250 MBq (99m)Tc-Nanocoll using a double-headed gamma camera with an integrated X-Ray device. All sentinel node localisations were included into the pelvic clinical target volume (CTV). Dose prescriptions were 50.4 Gy (5 Γ— 1.8 Gy / week) to the pelvis and 70.0 Gy (5 Γ— 2.0 Gy / week) to the prostate including the base of seminal vesicles or whole seminal vesicles. Patients were treated with IMRT. Furthermore a theoretical comparison between IMRT and a three-dimensional conformal technique was performed. RESULTS: Since 08/2003 6 patients were treated with this protocol. All patients had detectable sentinel lymph nodes (total 29). 4 of 6 patients showed sentinel node localisations (total 10), that would not have been treated adequately with CT-based planning ('geographical miss') only. The most common localisation for a probable geographical miss was the perirectal area. The comparison between dose-volume-histograms of IMRT- and conventional CT-planning demonstrated clear superiority of IMRT when all sentinel lymph nodes were included. IMRT allowed a significantly better sparing of normal tissue and reduced volumes of small bowel, large bowel and rectum irradiated with critical doses. No gastrointestinal or genitourinary acute toxicity Grade 3 or 4 (RTOG) occurred. CONCLUSION: IMRT based on sentinel lymph node identification is feasible and reduces the probability of a geographical miss. Furthermore, IMRT allows a pronounced sparing of normal tissue irradiation. Thus, the chosen approach will help to increase the curative potential of radiotherapy in high risk prostate cancer patients

    Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease

    Get PDF
    BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract

    Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses

    Get PDF
    Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through β€œpattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses

    Polycystic ovary syndrome

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic
    • …
    corecore