60 research outputs found

    Deconfinement and Gluon Plasma Dynamics in Improved Holographic QCD

    Get PDF
    The finite temperature physics of the pure glue sector in the improved holographic QCD model of arXiv:0707.1324 and arXiv:0707.1349 is addressed. The thermodynamics of 5D dilaton gravity duals to confining gauge theories is analyzed. We show that they exhibit a first order Hawking-Page type phase transition. In the explicit background of arXiv:0707.1349, we find T_c = 235 MeV. The temperature dependence of various thermodynamic quantities such as the pressure, entropy and speed of sound is calculated. The results show a good agreement with the corresponding lattice data.Comment: LaTeX, 15 pages, 6 eps figures. Added comments and references; corrected misprint in eq. (3.5). A slightly shorter version of this work will appear in Physical Review Letter

    Zero Sound in Effective Holographic Theories

    Full text link
    We investigate zero sound in DD-dimensional effective holographic theories, whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes include both zero temperature backgrounds with anisotropic scaling symmetry and their near-extremal counterparts obtained in 1006.2124 [hep-th], while the massless charge carriers are described by probe D-branes. We discuss thermodynamics of the probe D-branes analytically. In particular, we clarify the conditions under which the specific heat is linear in the temperature, which is a characteristic feature of Fermi liquids. We also compute the retarded Green's functions in the limit of low frequency and low momentum and find quasi-particle excitations in certain regime of the parameters. The retarded Green's functions are plotted at specific values of parameters in D=4D=4, where the specific heat is linear in the temperature and the quasi-particle excitation exists. We also calculate the AC conductivity in DD-dimensions as a by-product.Comment: 29 pages, 1 figur

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    Vector-axial vector correlators in weak electric field and the holographic dynamics of the chiral condensate

    Get PDF
    The transverse part of the vector-axial vector flavor current correlator in the presence of weak external electric field is studied using holography. The correlator is calculated using a bottom-up model arxiv:1003.2377 {proposed recently}, that includes the non-linear dynamics of the chiral condensate. It is shown that for low momenta the result agrees with the relation proposed by arXiv:1010.0718 {Son and Yamamoto} motivated by a simpler holographic model. For large Euclidean momenta however, the two results diverge. In the process, the difference of the vector and axial vector two point functions is also calculated. At large Euclidean momenta it is found that the first non-perturbative contribution, decreases as q6q^{-6} as expected from QCD.Comment: 17 pages, 5 figures, typos correcte

    Mesonic Spectrum from a Dynamical Gravity/Gauge model

    Full text link
    Within a formulation of a Dynamical AdS/QCD model we calculate the spectrum of light flavored mesons. The background fields of the model correspond to an IR deformed Anti de Sitter metric coupled to a dilaton field. Confinement comes as a consequence of the dilaton dynamics coupled to gravity. Additionally to the Regge-like spectrum of light- scalar, vector and higher spin mesons, we obtain the decay width of scalar mesons into two pions.Comment: Talk given at Light Cone 2009: Relativistic Hadronic and Particle Physics (LC 2009), Sao Jose dos Campos, Brazil, 8-13 Jul 2009

    Thermodynamics of deformed AdS5_5 model with a positive/negative quadratic correction in graviton-dilaton system

    Full text link
    By solving the Einstein equations of the graviton coupling with a real scalar dilaton field, we establish a general framework to self-consistently solve the geometric background with black-hole for any given phenomenological holographic models. In this framwork, we solve the black-hole background, the corresponding dilaon field and the dilaton potential for the deformed AdS5_5 model with a positive/negative quadratic correction. We systematically investigate the thermodynamical properties of the deformed AdS5_5 model with a positive and negative quadratic correction, respectively, and compare with lattice QCD on the results of the equation of state, the heavy quark potential, the Polyakov loop and the spatial Wilson loop. We find that the bulk thermodynamical properties are not sensitive to the sign of the quadratic correction, and the results of both deformed holographic QCD models agree well with lattice QCD result for pure SU(3) gauge theory. However, the results from loop operators favor a positive quadratic correction, which agree well with lattice QCD result. Especially, the result from the Polyakov loop excludes the model with a negative quadratic correction in the warp factor of AdS5{\rm AdS}_5.Comment: 26 figures,36 pages,V.3: an appendix,more equations and references added,figures corrected,published versio

    Holographic two dimensional QCD and Chern-Simons term

    Full text link
    We present a holographic realization of large Nc massless QCD in two dimensions using a D2/D8 brane construction. The flavor axial anomaly is dual to a three dimensional Chern-Simons term which turns out to be of leading order, and it affects the meson spectrum and holographic renormalization in crucial ways. The massless flavor bosons that exist in the spectrum are found to decouple from the heavier mesons, in agreement with the general lore of non-Abelian bosonization. We also show that an external dynamical photon acquires a mass through the three dimensional Chern-Simons term as expected from the Schwinger mechanism. Massless two dimensional QCD at large Nc exhibits anti-vector-meson dominance due to the axial anomaly.Comment: 22 page

    Release of Metal Ions from Orthodontic Appliances: An In Vitro Study

    Get PDF
    In this paper, we report the results of an in vitro experiment on the release of metal ions from orthodontic appliances composed of alloys containing iron, chromium, nickel, silicon, and molybdenum into artificial saliva. The concentrations of magnesium, aluminum, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, manganese, iron, cobalt, copper, zinc, nickel, and chromium were significantly higher in artificial saliva in which metal brackets, bands, and wires used in orthodontics were incubated. In relation to the maximum acceptable concentrations of metal ions in drinking water and to recommended daily doses, two elements of concern were nickel (573 vs. 15 μg/l in the controls) and chromium (101 vs. 8 μg/l in the controls). Three ion release coefficients were defined: α, a dimensionless multiplication factor; β, the difference in concentrations (in micrograms per liter); and γ, the ion release coefficient (in percent). The elevated levels of metals in saliva are thought to occur by corrosion of the chemical elements in the alloys or welding materials. The concentrations of some groups of dissolved elements appear to be interrelated
    corecore