
ar
X

iv
:0

80
4.

08
99

v3
  [

he
p-

th
] 

 2
5 

O
ct

 2
00

8

Preprint typeset in JHEP style - HYPER VERSION 0804.0899 [hep-th]

CPHT-RR024.0408

Deconfinement and Gluon Plasma Dynamics

in Improved Holographic QCD

U. Gürsoy1,2, E. Kiritsis1,3, L. Mazzanti1, F. Nitti1

1CPHT, Ecole Polytechnique, CNRS, 91128, Palaiseau, France

( UMR du CNRS 7644).

2Laboratoire de Physique Théorique,
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1. Introduction

Despite several decades’ efforts, an important part of the dynamics of QCD remains

far from analytical control and in several cases numerical techniques have proved

too difficult to implement. In particular, recent experiments at RHIC seem to probe

dynamical properties of the Quark Gluon Plasma (QGP) phase which are not within

the reach of lattice techniques without extra assumptions.

On the other hand large-Nc techniques have promised early-on an alternative

approach to the strongly coupled physics of QCD based on an effective string theory

description of glue. This route took an interesting twist in 1997 with the advent of

the Maldacena conjecture [1], with the unexpected result that the string theory must

live in more than four dimensions. In particular there is one extra dimension, known

as the holographic dimension, that plays the role of (renormalization group) energy

scale of the strongly coupled gauge theory.

Since [1] there has been a flurry of attempts to devise such correspondences for

gauge theories with less supersymmetry with the obvious final goal: QCD. Several

interesting string duals with a QCD-like low lying spectrum and confining IR physics

were proposed [2]. In the simplest D4 example flavor can be added via the addition

of D8 branes [3] and its finite temperature phase structure has similarities with QCD

[4]. Although such theories reproduced the qualitative features of IR QCD dynamics,

they contain Kaluza-Klein modes, not expected in QCD, with KK masses of the same

order as the dynamical scale of the gauge theory. Above this scale the theories deviate

from QCD. Despite the hostile environment of non-critical theory, several attempts
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have been made to understand holographic physics in lower dimensions in order to

avoid the KK contamination, based on two-derivative gravitational actions, [5].

A different and more phenomenological approach was in the meantime developed

and is now known as AdS/QCD. The original idea described in [6] was successfully

applied to the meson sector in [7], and its thermodynamics was analyzed in [8]. The

bulk gravitational background consists of a slice of AdS5, and a constant dilaton.

There is a UV and an IR cutoff. The confining IR physics is imposed by bound-

ary conditions at the IR boundary. This approach, although crude, has been partly

successful in studying meson physics, despite the fact that the dynamics driving chi-

ral symmetry breaking must be imposed by hand via IR boundary conditions. Its

shortcomings however include a glueball spectrum that does not fit well the lattice

data, the fact that magnetic quarks are confined instead of screened, and asymptotic

Regge trajectories for glueballs and mesons are quadratic instead of linear. A phe-

nomenological fix of the last problem was suggested by introducing a soft IR wall, [9].

Although this fixes the asymptotic spectrum, it does not allow a proper treatment of

thermodynamics. In particular, neither dilaton nor metric equations of motion are

solved. Therefore the “on-shell” action is not really on-shell. The entropy computed

from the BH horizon does not match the entropy calculated using standard ther-

modynamics from the free energy computed from the action, etc. Phenomenological

metrics for the deconfined phase were also suggested, [10, 11] capturing some aspects

of the expected thermodynamics.

In [12] an improved model for QCD was proposed. It united inputs from both

gauge theory and string theory while keeping the simplicity of a two derivative action.

It could describe both the region of asymptotic freedom as well as the strong IR

dynamics of QCD. It is a 5d theory like AdS/QCD.

In this letter we present the finite temperature dynamics in the pure gauge sec-

tor derived from the setup of [12]. We find that this setup describes very well the

basic features of large-Nc Yang Mills at finite temperature. It exhibits a first or-

der deconfining phase transition. The equation of state and speed of sound of the

high temperature phase are remarkably similar to the corresponding lattice results.

Moreover, using the zero temperature potential and without adding any extra pa-

rameter, we obtain a value for the the critical temperature in very good agreement

with the one computed from the lattice. A detailed derivation of the results will

appear elsewhere, [13].

2. Improved Holographic QCD at T=0

The holographic model introduced in [12] is five-dimensional. The basic fields that

are non-trivial in the vacuum solution, and describe the pure gauge dynamics, are

the 5d metric gµν , a scalar Φ (the dilaton) that controls the ’t Hooft coupling λt of

QCD, and an axion a, that is dual to to the QCD θ angle. Moreover, as the kinetic
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term of the axion is suppressed by 1/N2
c , it does not play any role neither in the

geometry, nor in the evolution of the ’t Hooft coupling. It has however a non-trivial

profile in the vacuum, implying an IR running of the effective θ-angle, [12]. Quarks

can be added to the pure gauge theory by adding space-filling D4 − D̄4 brane pairs

in the background gauge theory solution. The D4 − D̄4 tachyon condensation then

induces chiral symmetry breaking, [15, 12].

The action for the 5D Einstein-dilaton theory reads,

S5 = M3
pN

2
c

(

−
∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
+ V (λ)

]

+ 2

∫

∂M

d4x
√
h K

)

(2.1)

where Mp is the Planck mass 1 and we use the conventions of [14]. The second term

in the action is the Gibbons-Hawking with K being the extrinsic curvature on the

boundary.

The only nontrivial input in the two-derivative action of the graviton and the

dilaton is the dilaton potential V (λ), where λ = eΦ. λ is proportional to the ’t

Hooft coupling of the gauge theory, λ = κλt. The constant of proportionality κ

cannot be calculated at present from first principles but as we discuss below all of

the physical observables turn out to be independent of κ. The potential is directly

related to the gauge theory β-function once a holographic definition of energy is

chosen. Although the shape of V (λ) is not fixed without knowledge of the exact

gauge theory β-function, its UV and IR asymptotics can be determined.

In the UV, the input comes from perturbative QCD. We demand asymptotic

freedom with logarithmic running. This implies in particular that the asymptotic

UV geometry is that of AdS5 with logarithmic corrections. It requires a (weak-

coupling) expansion of V (λ) of the form V (λ) = 12/ℓ2(1 + v1λ+ v2λ
2 + · · · ). Here ℓ

is the AdS radius and vi are dimensionless parameters of the potential directly related

to the perturbative β-function coefficients of QCD, [12]. In conformal coordinates,

close to the AdS5 boundary at r = 0, the metric and dilaton behave as 2:

ds20 =
ℓ2

r2

(

1 +
8

9

1

log rΛ
+ · · ·

)

(

dr2 + dx2
4

)

, (2.2)

λ0 = − 1

log rΛ
+ · · ·

where the ellipsis represent higher order corrections that arise from second and

higher-order terms in the β-function. The mass scale Λ is an initial condition for the

dilaton equation and corresponds to ΛQCD.

Demanding confinement of the color charges restricts the large-λ asymptotics of

V (λ). In [12] we focused on potentials such that, as λ → ∞, V (λ) ∼ λ
4
3 (log λ)(α−1)/α

1The physical Planck mass that governs the interactions is MpN
2

3 . We will however call Mp the

Planck mass for simplicity.
2We will use a “zero” subscript to indicate quantities evaluated at zero temperature.
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where α is a positive parameter. The IR asymptotics of the solution in the Einstein

frame are:

ds20 → e−C( r

ℓ
)
α
(

dr2 + dx2
4

)

, λ0 → e3C/2( r

ℓ
)
α
(r

ℓ

)
3
4
(α−1)

(2.3)

where the constant C is a positive constant related to Λ in (2.2). Confinement

requires α ≥ 1. The parameter α characterizes the large excitation asymptotics of

the glueball spectrum, m2
n ∼ n2(α−1)/α. For linear confinement, we choose α = 2.

The parameters of the holographic model a priori are: the Planck mass Mp,

which governs the scale of interactions between the glueballs in the theory, κ that

relates λ and the ’t Hooft coupling, the parameters vi that specify the shape of

the potential, the scale Λ that plays the role of ΛQCD and the AdS scale ℓ. The

latter is not a physical parameter but only a choice of scale: only Λℓ enters into

the computation of physical observables. A specific choice for V (λ) was made in [12]

with the appropriate asymptotic properties, that only depended on a single parameter

which can be taken as v1, hence fixing all vi for i > 1. Furthermore, one can show

that all of the physical observables both at zero T and finite T are left invariant

under a rescaling of λ. More concretely, given a potential V (λ) and a dilaton profile

that follows from this potential with an integration constant Λ, there exists another

profile with a different integration constant Λη which follows from a rescaled potential

Vη(λ) = V (ηλ) and the two solutions yield the same glueball spectra and the same

thermodynamic observables. This symmetry allows one to scale away the parameter

κ. Finally, v1 and Λ are fixed by matching to the lattice data for the first two 0++

glueball masses. Once Λ is fixed, all other interesting scales, like the fundamental

string scale ℓs and the effective QCD string tension σ are also fixed.

This determines all the parameters of the theory except the Planck mass Mpℓ.

We shall show below that Mp can be indirectly inferred from the large temperature

behavior.

3. The deconfinement transition

At finite temperature there exist two distinct types of solutions to the action (2.1)

with AdS asymptotics, (2.2):

i. The thermal graviton gas, obtained by compactifying the Euclidean time in

the zero temperature solution with τ ∼ τ + 1/T :

ds2 = b20(r)
(

dr2 + dτ 2 + dx2
3

)

, λ = λ0(r). (3.1)

This solution exists for all T ≥ 0 and corresponds to a confined phase, if the

gauge theory at zero T confines.
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ii. The black hole (BH) solutions (in Euclidean time) of the form:

ds2 = b2(r)

(

dr2

f(r)
+ f(r)dτ 2 + dx2

3

)

, λ = λ(r). (3.2)

The function f(r) approaches unity close to the boundary at r = 0. There

exists a singularity in the interior at r = ∞ that is now hidden by a regular

horizon at r = rh where f vanishes. Such solutions correspond to a deconfined

phase.

As we discuss below, in confining theories the BH solutions exist only above a certain

minimum temperature, T > Tmin.

The thermal gas solution has two parameters: T and Λ. The black hole solution

should also have a similar set of parameters: the equations of motion are second order

for λ and f , and first order for b [13]. Thus, a priori there are 5 integration constants

to be specified. A combination of two integration constants of b and λ determines Λ.

(The other combination can be removed by reparametrization invariance in r). The

condition f → 1 on the boundary removes one integration constant and demanding

regularity at the horizon, r = rh, in the form f → fh(rh − r), removes another. The

remaining integration constant can be taken as fh, related to the temperature by

4πT = fh. From Einstein’s equations one can show [13]:

4π T = b−3(rh)

(
∫ rh

0

du

b(u)3

)

−1

. (3.3)

In the large Nc limit, the saddle point of the action is dominated by one of the

two types of solutions. In order to determine the one with minimum free energy, we

need to compare the actions evaluated on solutions i. and ii. with equal temperature.

We introduce a cutoff boundary at r/ℓ = ǫ in order to regulate the infinite

volume. The difference of the two scale factors is given near the boundary as [13]:

b(ǫ)− b0(ǫ) = C(T )ǫ3 + · · · (3.4)

By the standard rules of AdS/CFT we can relate C(T ) to the difference of VEVs of

the gluon condensate: C(T ) ∝ 〈TrF 2〉T − 〈TrF 2〉0.
The free energy difference is given by [13]:

F = M3
pN

2
c V3

(

15C(T )ℓ−1 − πTb3(rh)
)

= 15C(T )M3
pN

2
c V3ℓ

−1 − TS

4
, (3.5)

where, in the last equality, we used the fact that the entropy is given by the area

of the horizon. It is clear that the existence of a non-trivial deconfinement phase

transition is driven by a non-zero value for the thermal gluon condensate C(T ).
For a general potential we can prove the following statements, that only require

the validity of the laws of black hole thermodynamics:

– 5 –



i. There exists a phase transition at finite T, if and only if the zero-T theory

confines.

ii. This transition is of the first order for all of the confining geometries, with a

single exception described in iii:

iii. In the limit confining geometry b0(r) → exp(−Cr) (as r → ∞), the phase

transition is of the second order and happens at T = 3C/4π.

iv. All of the non-confining geometries at zero T are always in the black hole phase

at finite T. They exhibit a second order phase transition at T = 0+.

We now sketch a heuristic argument, limited to asymptotics of the type (2.3). A

general, coordinate independent proof will appear in [13].

The existence of a minimum black hole temperature Tmin in confining theories

follows from the small and large rh behavior of the geometries. On one hand, the

black-hole approaches an AdS-Schwarzschild geometry near the boundary, which

obeys T = 1/πrh. On the other hand, as the horizon approaches the deep interior

i.e. rh → ∞, the mass of the black-hole vanishes and the black hole solution ap-

proaches the zero-T geometry in this limit. In passing, we note that this implies

vanishing of F in this limit. Using the large rh limit in (3.3), we find the following

asymptotics for T :

T → 3Cα

4π
rα−1
h , rh → ∞; T → 1

πrh
, rh → 0. (3.6)

The large rh behavior in eq. (3.6) is valid under the assumption that the zero-

T solution, with IR asymptotics (2.3), can be continuously deformed into a black

hole with arbitrarily small mass and arbitrarily large value of rh. This assumption

indeed holds, as we will show elsewhere [13] for a more general class of confining

backgrounds.

Eq. (3.6) shows that for α ≥ 1, that there exists a minimum temperature

Tmin > 0 above which the black-hole solutions exist. Here, for simplicity, we assume

a single extremum of the function T (rh). We illustrate the function T (rh) schemat-

ically in figure 1. The simple convex shapes in (a) are due to our assumption of a

single minimum. In general the function T (rh) may exhibit multiple extrema. Our

demonstration here can be generalized to these cases [13]. In the confining geometries

α > 1, for a given T > Tmin, there exist a big and a small black hole solution, given

by rh < rmin and rh > rmin respectively, see fig.1. The big BH has positive specific

heat hence it is thermodynamically stable, whereas the small BH is unstable. In the

borderline confining geometry α = 1, there is a single BH solution.

Existence of a critical temperature Tc ≥ Tmin for α ≥ 1 follows from the physical

requirement of positive entropy. From the first law of thermodynamics, it follows that
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100

200
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-0.1

0.1
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(b)

Figure 1: Schematic behavior of temperature (a) and free energy density (b) as a function

of rh, for the infinite-r geometries of the type (2.3), for different values of α.

dF/drh = −S dT/drh. Then, as S > 0 for any physical system, extrema of F(rh)

should coincide with the extrema of T (rh). Using also the fact that F(rh) → −∞ for

rh → 0 and F(rh) → 0 near rh → ∞, we arrive at conclusion (ii) described above:

There is a first order transition for all of the confining geometries.

An interesting case is the borderline confining geometry, where Tc coincides with

Tmin and located at rh = ∞. The entropy vanishes there because the geometry

shrinks to zero size. The free energy also vanishes because this point coincides with

Tc. Therefore the latent heat also vanishes and one has a second order transition.

Although this geometry is not interesting for the gauge theory, it is of some interest

for GR. We recall [12], that it corresponds to an asymptotically AdS geometry that

becomes a linear dilaton background in the deep interior. We have shown that such a

geometry exhibits a second order Hawking-Page transition into a black-hole solution.

By similar arguments, point iv of the proposition above can also be demonstrated
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without difficulty.

Finally, the small rh asymptotics also allows us to fix the value of the Planck

mass in (2.1). Small rh corresponds to high T . This geometry corresponds to an

ideal gas of gluons with a free energy density F → (π2/45)N2
c V3T

4. On the other

hand, as the geometry becomes AdS, eq. (3.5) implies3 that: F → π4(Mpℓ)
3N2

c T
4V3.

Hence we conclude that,

Mpℓ =
(

45π2
)

−

1
3 . (3.7)

Using the value of ℓ in [12], we obtain Mp ≈ 2.32 GeV.

4. Numerical Results

In [12] an explicit form of the scalar potential with the correct asymptotics was

proposed. The resulting background, that corresponds to the choice α = 2 in (2.3),

exhibits asymptotic freedom, linear confinement, and a glueball spectrum in very

good quantitative agreement with the lattice data. Here we present a numerical

computation of the relevant thermodynamic quantities in the same theory.

The potential chosen in [12] was fixed such that the UV expansion reproduces the

Yang-Mills beta-function up to two loops and has the large-λ asymptotics V (λ) ∼
λ4/3(log λ)1/2. It depends on two parameters: the first is the overall normalization

(that fixes the AdS length ℓ and the energy units); the second is b0, that is equivalent

to the coefficient of linear term in the small λ expansion, i.e. v1. These parameters

were fit to reproduce the lattice results for the two lowest scalar glueball masses.

Our general analysis shows that this theory has black hole solutions above a

temperature Tmin and exhibits a first order phase transition at some Tc > Tmin

To analyze the behavior of the theory at finite temperature, we have solved nu-

merically Einstein’s equations for the metric and dilaton. The integration constants

were fixed as explained earlier. We find a minimum temperature for the existence of

black hole solutions, Tmin = 210 MeV.

Next, we compute the free energy difference between the black hole and thermal

gas solutions, as a function of temperature. As shown in eq. (3.5), there are two

competing contributions, which must be dealt with separately:

1. The term πTb3(rh) can be obtained directly by evaluating the numerical solu-

tion at the horizon.

2. The term 15C(T )ℓ−1 must be extracted by fitting the coefficient of the cubic

term in the black hole scale factor close to the boundary, b(r)−b0(r) ∼ C(T )r3.
This is a large source of error in our numerics, since it is a tiny quantity arising

as a difference of O(1) quantities.

3It can be shown that the first term in (3.5) is subleading in the high T limit.
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The resulting free energy as a function of the temperature is shown in figure 2, which

clearly shows the existence of a minimum temperature, and a first order phase tran-

sition at T = Tc, where F(Tc) = 0. For T < Tc, the thermal gas dominates, and the

system is in the confined phase. For T > Tc, the (large) black hole dominates, corre-

sponding to a deconfined phase. The small black hole branch is thermodynamically

disfavored at all temperatures.

Fbh=Fth
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re
200 250 300 350 400

THMeVL

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

F

Nc
2 V3

AGeV4E

Figure 2: Black hole free energy

The value we obtain for the critical temperature, Tc = 235± 15 MeV, is close

to the value obtained for large-N Yang-Mills [16], which with our normalization of

the lightest glueball would be 260± 11 MeV 4. It should be emphasized that, we did

not have to adjust any new parameter with respect to the zero-temperature theory

in order to obtain this result.

From the free energy we can determine all other quantities by thermodynamic

identities. However, for numerical precision it is preferable to derive the entropy

directly as the black hole area, rather than as a derivative of the free energy. The

latter suffers from the uncertainty in the determination of C(T ). Also, due to the

linear dependence of all thermodynamic quantities on V3, it is convenient to use

densities. The pressure, and the energy and entropy densities of the deconfined

phase are given by:

p = −F/V3, s = 4πM3
pN

2
c b

3
T (rh), ǫ = p+ Ts. (4.1)

Next, we present some of the thermodynamic quantities that are compared with

the lattice results. It is useful to compare dimensionless quantities, so that the

ℓ-dependence drops out.

4The physical units are obtained by fixing m0++ =1475 MeV as in [12]. The value 260±11 MeV

is obtained combining the results in [16] and [17]
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Figure 3: (a) Dimensionless thermodynamic functions and (b) interaction measure. The

dashed curves correspond to the lattice data of [18]

Latent Heat The latent heat per unit volume is defined as the jump in the

energy at the phase transition, Lh = Tc∆s(Tc), and it is expected to scale as N2
c in

the large Nc limit [16]. From eq. (4.1) we note that this expectation is reproduced

in our theory. Quantitatively, we find L
1/4
h /Tc ≃ 0.65

√
Nc. This is to be compared

with the value 0.77 reported in [16].

Equation of state and the interaction measure. A useful indication about

the thermodynamics of a system is given by the relations between the quantities

ǫ/T 4, 3(p/T 4), 3/4(s/T 3) (the normalizations are chosen so that they all equal the

same constant in the case of a free relativistic gas). In figure 3 (a) we compare our
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results for these quantities with the corresponding lattice results, reported in [18]5.

In the low temperature phase, the thermodynamic functions vanish to the leading

order in N2
c and the jump in ǫ and s at Tc reflects the first order phase transition.

The interaction measure, (ǫ − 3p)/T 4 (proportional to the trace anomaly), is

plotted in figure 3 (b), together with the lattice result from [18]. From eq. (3.5),

ǫ− 3p ∝ C(T ), consistent with our interpretation of C(T ) as the gluon condensate.

Speed of sound. This quantity is defined as c2s = (∂p/∂ǫ)S = s/cv. It is

expected to be small at the phase transition, and to reach the conformal value c2s =

1/3 at high temperatures. In figure 4 we compare our results with the lattice data,

finding good agreement.
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Figure 4: Comparison between the speed of sound in our model and the lattice result of

[18] (dashed curves)

Shear viscosity. In agreement with the general results of [19], the ratio between

shear viscosity and entropy density is η/s = (4π)−1.

5. Discussion

The model presented here describes well the basic features of large-Nc Yang Mills

at finite temperature: it exhibits a first order deconfining phase transition, and

the temperature dependence of the pressure, entropy, energy density, interaction

measure and speed of sound in the high temperature phase behave similarly to the

corresponding lattice results. Without adding any extra parameter, one obtains a

value for the critical temperature 10 % off the lattice value.

5These results are for Nc = 3; we are unaware of similar plots obtained in the large Nc limit.
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On the other hand the model can be improved in many ways. The latent heat

Lh/T
4
c is 40% off the lattice value. Also, our comparison shows that (see e.g. fig 3a)

approach to the free field limit at high T is slower than the lattice data. This may be

traced back to the relative smallness of the latent heat in our potential. Although the

UV and the IR asymptotics of the dilaton potential are fixed by general requirements

from the field theory, the intermediate region is free to modify. The reason is that the

low-level glueball spectrum and the thermodynamics near the phase transition are

not controlled by the same regions of the potential. With a suitable deformation one

hopes to obtain better agreement with the lattice data. In particular, it is possible

to obtain a fit to quantities in figs. 3 and 4, well within the errors of the lattice data

in a temperature range Tc < T < 5Tc [13]. Retrofitting the potential is an interesting

challenge that we plan to address in [13].
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