40 research outputs found

    The diabetes gene Zfp69 modulates hepatic insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells. To provide direct evidence for a causal role of Zfp69, we investigated the effects of its overexpression on both a lean [B6-Tg(Zfp69)] and an obese [NZO/B6-Tg(Zfp69)] background. METHODS: Zfp69 transgenic mice were generated by integrating the cDNA into the ROSA locus of the C57BL/6 genome and characterised. RESULTS: B6-Tg(Zfp69) mice were normoglycaemic, developed hyperinsulinaemia, and exhibited increased expression of G6pc and Pck1 and slightly reduced phospho-Akt levels in the liver. During OGTTs, glucose clearance was normal but insulin levels were significantly higher in the B6-Tg(Zfp69) than in control mice. The liver fat content and plasma triacylglycerol levels were significantly increased in B6-Tg(Zfp69) and NZO/B6-Tg(Zfp69) mice on a high-fat diet compared with controls. Liver transcriptome analysis of B6-Tg(Zfp69) mice revealed a downregulation of genes involved in glucose and lipid metabolism. Specifically, expression of Nampt, Lpin2, Map2k6, Gys2, Bnip3, Fitm2, Slc2a2, Ppargc1α and Insr was significantly decreased in the liver of B6-Tg(Zfp69) mice compared with wild-type animals. However, overexpression of Zfp69 did not induce overt diabetes with hyperglycaemia and beta cell loss. CONCLUSIONS/INTERPRETATION: Zfp69 mediates hyperlipidaemia, liver fat accumulation and mild insulin resistance. However, it does not induce type 2 diabetes, suggesting that the diabetogenic effect of the Zfp69 locus requires synergy with other as yet unidentified genes

    The effect of ABCA1 gene polymorphisms on ischaemic stroke risk and relationship with lipid profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischaemic stroke is a common disorder with genetic and environmental components contributing to overall risk. Atherothromboembolic abnormalities, which play a crucial role in the pathogenesis of ischaemic stroke, are often the end result of dysregulation of lipid metabolism. The ATP Binding Cassette Transporter (<it>ABCA1</it>) is a key gene involved in lipid metabolism. It encodes the cholesterol regulatory efflux protein which mediates the transfer of cellular phospholipids and cholesterol to acceptor apolipoproteins such as apolipoprotein A-I (ApoA-I). Common polymorphisms in this gene affect High Density Lipoprotein Cholesterol (HDL-C) and Apolipoprotein A-I levels and so influence the risk of atherosclerosis. This study has assessed the distribution of <it>ABCA1 </it>polymorphisms and haplotype arrangements in patients with ischaemic stroke and compared them to an appropriate control group. It also examined the relationship of these polymorphisms with serum lipid profiles in cases and controls.</p> <p>Methods</p> <p>We studied four common polymorphisms in <it>ABCA1 </it>gene: G/A-L158L, G/A-R219K, G/A-G316G and G/A-R1587K in 400 Caucasian ischaemic stroke patients and 487 controls. Dynamic Allele Specific Hybridisation (DASH) was used as the genotyping assay.</p> <p>Results</p> <p>Genotype and allele frequencies of all polymorphisms were similar in cases and controls, except for a modest difference in the <it>ABCA1 </it>R219K allele frequency (P-value = 0.05). Using the PHASE2 program, haplotype frequencies for the four loci (158, 219, 316, and 1587) were estimated in cases and controls. There was no significant difference in overall haplotypes arrangement in patients group compared to controls (p = 0.27). 2211 and 1211 haplotypes (1 = common allele, 2 = rare allele) were more frequent in cases (p = 0.05). Adjusted ORs indicated 40% and 46% excess risk of stroke for these haplotypes respectively. However, none of the adjusted ORs were statistically significant. Individuals who had R219K "22" genotype had a higher LDL level (p = 0.001).</p> <p>Conclusion</p> <p>Our study does not support a major role for the <it>ABCA1 </it>gene as a risk factor for ischaemic stroke. Some haplotypes may confer a minor amount of increased risk or protection. Polymorphisms in this gene may influence serum lipid profile.</p

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore