1,932 research outputs found
The Effect of Axial Compression and Distraction on Cervical Facet Cartilage Apposition During Shear and Bending Motions
During cervical spine trauma, complex intervertebral motions can cause a reduction in facet joint cartilage apposition area (CAA), leading to cervical facet dislocation (CFD). Intervertebral compression and distraction likely alter the magnitude and location of CAA, and may influence the risk of facet fracture. The aim of this study was to investigate facet joint CAA resulting from intervertebral distraction (2.5 mm) or compression (50, 300 N) superimposed on shear and bending motions. Intervertebral and facet joint kinematics were applied to multi rigid-body kinematic models of twelve C6/C7 motion segments (70 ± 13 year, nine male) with specimen-specific cartilage profiles. CAA was qualitatively and quantitatively compared between distraction and compression conditions for each motion; linear mixed-effects models (a = 0.05) were applied. Distraction significantly decreased CAA throughout all motions, compared to the compressed conditions (p<0.001), and shifted the apposition region towards the facet tip. These observations were consistent bilaterally for both asymmetric and symmetric motions. The results indicate that axial neck loads, which are altered by muscle activation and head loading, influences facet apposition. Investigating CAA in longer cervical spine segments subjected to quasistatic or dynamic loading may provide insight into dislocation and fracture mechanisms.Ryan D. Quarrington, Darcy W. Thompson-Bagsshaw and Claire F. Jone
Recommended from our members
Houdini: a remote mobile platform for tank waste retrieval tasks
RedZone has developed Houdini{trademark}, a folding frame vehicle for work in waste storage tanks and other confined-access areas. Houdini is a tethered, hydraulically-powered platform that folds to fit through small openings. Once deployed, the vehicle unfolds to provide a substantial work platform for the deployment of a wide variety of tools. The Houdini system will perform wheel removal, waste retrieval, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. Within the DOE Complex, 332 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. The ultimate goal of the program is to develop and commercialize the Houdini system for broad application throughout the DOE Complex
Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process
We report the successful fabrication of single-filament composite MgB2/SUS
ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT)
process, by swaging and cold rolling only. The remarkable transport critical
current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected
result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T
= 20 K were observed at self-field, for the non-sintered composite MgB2/SUS
ribbon. In addition, the persistent current density Jp values, that were
estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K,
and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS
ribbon, at H = 0 G.Comment: 10 pages, 4 figure
Pseudogap Formation in the Symmetric Anderson Lattice Model
We present self-consistent calculations for the self-energy and magnetic
susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the
fluctuation exchange approximation. At high temperatures, strong f-electron
scattering leads to broad quasiparticle spectral functions, a reduced
quasiparticle band gap, and a metallic density of states. As the temperature is
lowered, the spectral functions narrow and a pseudogap forms at the
characteristic temperature at which the width of the quasiparticle
spectral function at the gap edge is comparable to the renormalized activation
energy. For , the pseudogap is approximately equal to the
hybridization gap in the bare band structure. The opening of the pseudogap is
clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request),
NRL-JA-6690-94-002
The Structural Response of the Human Head to a Vertex Impact.
OnlinePublIn experimental models of cervical spine trauma caused by near-vertex head-first impact, a surrogate headform may be substituted for the cadaveric head. To inform headform design and to verify that such substitution is valid, the force-deformation response of the human head with boundary conditions relevant to cervical spine head-first impact models is required. There are currently no biomechanics data that characterize the force-deformation response of the isolated head supported at the occiput and compressed at the vertex by a flat impactor. The effect of impact velocity (1, 2 or 3 m/s) on the response of human heads (N = 22) subjected to vertex impacts, while supported by a rigid occipital mount, was investigated. 1 and 2 m/s impacts elicited force-deformation responses with two linear regions, while 3 m/s impacts resulted in a single linear region and skull base ring fractures. Peak force and stiffness increased from 1 to 2 and 3 m/s. Deformation at peak force and absorbed energy increased from 1 to 2 m/s, but decreased from 2 to 3 m/s. The data reported herein enhances the limited knowledge on the human head's response to a vertex impact, which may allow for validation of surrogate head models in this loading scenario.Darcy W. Thompson, Bagshaw, Ryan D. Quarrington, Andrew M. Dwyer, Nigel R. Jones, Claire F. Jone
The UKIDSS Galactic Plane Survey
'The definitive version is available at www.blackwell-synergy.com .' Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13924.xThe UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared TelescopePeer reviewe
Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality
Effects and interactions of calpain-system tenderness gene markers on objective meat quality traits of Brahman (Bos indicus) cattle were quantified within 2 concurrent experiments at different locations. Cattle were selected for study from commercial and research herds at weaning based on their genotype for cal-pastatin (CAST) and calpain 3 (GAPN3) gene markers for beef tenderness. Gene marker status for i-calpain (CAPN1-4751 and CAPN1-316) was also determined for inclusion in statistical analyses. Eighty-two heifer and 82 castrated male cattle with 0 or 2 favorable alleles for CAST and CAPN3 were studied in New South Wales (NSW), and 143 castrated male cattle with 0, 1, or 2 favorable alleles for CAST and CAPN3 were studied in Western Australia (WA). The cattle were backgrounded for 6 to 8 mo and grain-fed for 117 d (NSW) or 80 d (WA) before slaughter. One-half the cattle in each experiment were implanted with a hormonal growth promotant during feedlotting. One side of each carcass was suspended from the Achilles tendon (AT) and the other from the pelvis (tenderstretch). The M. longissimus lumborum from both sides and the M. semitendinosus from the AT side were collected; then samples of each were aged at 1°C for 1 or 7 d. Favorable alleles for one or more markers reduced shear force, with little effect on other meat quality traits. The size of effects of individual markers varied with site, muscle, method of carcass suspension, and aging period. Individual marker effects were additive as evident in cattle with 4 favorable alleles for CAST and CAPN3 markers, which had shear force reductions of 12.2 N (P 0.05) of interactions between the gene markers, or between the hormonal growth promotant and gene markers for any meat quality traits. This study provides further evidence that selection based on the CAST or CAPN3 gene markers improves meat tenderness in Brahman cattle, with little if any detrimental effects on other meat quality traits. The CAPN1-4751 gene marker also improved beef tenderness without affecting other objective meat quality traits in heterozygous cattle compared with homozygotes for the unfavorable allele
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
- …