131 research outputs found

    A Note on the Integral Formulation of Einstein's Equations Induced on a Braneworld

    Full text link
    We revisit the integral formulation (or Green's function approach) of Einstein's equations in the context of braneworlds. The integral formulation has been proposed independently by several authors in the past, based on the assumption that it is possible to give a reinterpretation of the local metric field in curved spacetimes as an integral expression involving sources and boundary conditions. This allows one to separate source-generated and source-free contributions to the metric field. As a consequence, an exact meaning to Mach's Principle can be achieved in the sense that only source-generated (matter fields) contributions to the metric are allowed for; universes which do not obey this condition would be non-Machian. In this paper, we revisit this idea concentrating on a Randall-Sundrum-type model with a non-trivial cosmology on the brane. We argue that the role of the surface term (the source-free contribution) in the braneworld scenario may be quite subtler than in the 4D formulation. This may pose, for instance, an interesting issue to the cosmological constant problem.Comment: 10 pages, no figures, accepted for publication in the General Relativity and Gravitation Journa

    Classical confinement of test particles in higher-dimensional models: stability criteria and a new energy condition

    Full text link
    We review the circumstances under which test particles can be localized around a spacetime section \Sigma_0 smoothly contained within a codimension-1 embedding space M. If such a confinement is possible, \Sigma_0 is said to be totally geodesic. Using three different methods, we derive a stability condition for trapped test particles in terms of intrinsic geometrical quantities on \Sigma_0 and M; namely, confined paths are stable against perturbations if the gravitational stress-energy density on M is larger than that on \Sigma_0, as measured by an observed travelling along the unperturbed trajectory. We confirm our general result explicitly in two different cases: the warped-product metric ansatz for (n+1)-dimensional Einstein spaces, and a known solution of the 5-dimensional vacuum field equation embedding certain 4-dimensional cosmologies. We conclude by defining a confinement energy condition that can be used to classify geometries incorporating totally geodesic submanifolds, such as those found in thick braneworld and other 5-dimensional scenarios.Comment: 9 pages, REVTeX4, in press in Phys. Rev.

    A Note on Solitons in Brane Worlds

    Get PDF
    We obtain the zero mode effective action for gravitating objects in the bulk of dilatonic domain walls. Without additional fields included in the bulk action, the zero mode effective action reproduces the action in one lower dimensions obtained through the ordinary Kaluza-Klein (KK) compactification, only when the transverse (to the domain wall) component of the bulk metric does not have non-trivial term depending on the domain wall worldvolume coordinates. With additional fields included in the bulk action, non-trivial dependence of the transverse metric component on the domain wall worldvolume coordinates appears to be essential in reproducing the lower-dimensional action obtained via the ordinary KK compactification. We find, in particular, that the effective action for the charged (p+1)-brane in the domain wall bulk reproduces the action for the p-brane in one lower dimensions.Comment: 13 pages, LaTe

    Influence of fear of pain and coping strategies on health-related quality of life and patient-anticipated outcomes in patients with chronic pain: cross-sectional study protocol

    Get PDF
    Published 08.09.17Background: Fear of pain and coping strategies are emotional-behavioral responses to pain and are known to play an important role in the development and maintenance of pain. It is highly likely that fear of pain and coping strategies influence each other, potentially affecting the course of chronic pain. To our knowledge, the relationship between pain, fear of pain and coping strategies, and how they influence patient-anticipated outcomes and health-related quality of life, have not been investigated. Objective: The aims of this study are to test (1) if both fear of pain and/or coping strategies are sufficient causes for maintaining pain; and (2) whether fear of pain influences coping strategies and pain intensity. The study will also examine the impact of fear of pain and coping strategies on health-related quality of life and patient-anticipated outcomes. Methods: The cross-sectional study will be conducted using an online survey. The Fear of Pain Questionnaire-III (FPQ-III), the Brief Coping Inventory (COPE), and EuroQoL-5d (EQ-5D) validated questionnaires will be used to collect data. Information pertaining to demographic factors, pain-related factors, and patient-anticipated outcomes will also be collected. The study has ethics approval from the Human Research Ethics Committee of the University of Adelaide. Study participants will be individuals aged 18 years and above who are experiencing chronic pain (ie, pain lasting more than 6 months). Effect measure modification technique (EMMM) will be used to examine if fear of pain acts as a moderator or mediator between coping strategies and pain. Simple and multinomial logistic regression analysis will be used to examine the effect of fear of pain and coping strategies on health-related quality of life and patient-anticipated outcomes. Results: Recruitment began July 2017 and it is anticipated that data collection will be completed by October 2017. Findings from this study will help to extend our understanding of fear of pain and coping strategies, their interaction, and their impact on health-related quality of life and patient-anticipated outcomes. Conclusions: Fear of pain and coping strategies have significant influence on the experience of chronic pain and its course. This study will help enhance our understanding of the relationship between fear of pain and coping strategies, which may help in developing patient-centered care practices.Manasi Murthy Mittinty, David S Brennan, Cameron L Randall, Daniel W McNeil, Murthy N Mittinty, Lisa Jamieso

    Eikonal contributions to ultra high energy neutrino-nucleon cross sections in low scale gravity models

    Full text link
    We calculate low scale gravity effects on the cross section for neutrino-nucleon scattering at center of mass energies up to the Greisen-Zatsepin-Kuzmin (GZK) scale, in the eikonal approximation. We compare the cases of an infinitely thin brane embedded in n=5 compactified extra-dimensions, and of a brane with a physical tension M_{S}=1 TeV and M_{S}=10 TeV. The extra dimensional Planck scale M_{D} is set at 10^{3} GeV and 2\times10^{3} GeV. We also compare our calculations with neutral current standard model calculations in the same energy range, and compare the thin brane eikonal cross section to its saddle point approximation. New physics effects enhance the cross section by orders of magnitude on average. They are quite sensitive to M_{S} and M_{D} choices, though much less sensitive to n.Comment: 16 pages, 5 figures; 2 figures were removed and the remaining figures and the text were modified for clarification; published versio

    Consensus statement on future directions for the behavioral and social sciences in oral health

    Get PDF
    The behavioral and social sciences are central to understanding and addressing oral and craniofacial health, diseases, and conditions. With both basic and applied approaches, behavioral and social sciences are relevant to every discipline in dentistry and all dental, oral, and craniofacial sciences, as well as oral health promotion programs and health care delivery. Key to understanding multilevel, interacting influences on oral health behavior and outcomes, the behavioral and social sciences focus on individuals, families, groups, cultures, systems, societies, regions, and nations. Uniquely positioned to highlight the importance of racial, cultural, and other equity in oral health, the behavioral and social sciences necessitate a focus on both individuals and groups, societal reactions to them related to power, and environmental and other contextual factors. Presented here is a consensus statement that was produced through an iterative feedback process. The statement reflects the current state of knowledge in the behavioral and social oral health sciences and identifies future directions for the field, focusing on 4 key areas: behavioral and social theories and mechanisms related to oral health, use of multiple and novel methodologies in social and behavioral research and practice related to oral health, development and testing of behavioral and social interventions to promote oral health, and dissemination and implementation research for oral health. This statement was endorsed by over 400 individuals and groups from around the world and representing numerous disciplines in oral health and the behavioral and social sciences. Having reached consensus, action is needed to advance and further integrate and translate behavioral and social sciences into oral health research, oral health promotion and health care, and the training of those working to ensure oral health for all

    The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang

    Get PDF
    We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orbifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations without invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra dimensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polarization experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde

    Dynamics of Interacting Generalized Cosmic Chaplygin gas in Brane-world scenario

    Full text link
    In this work we explore the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of Generalized Cosmic Chaplygin gas is consistent with the late cosmic acceleration, but not without satisfying certain conditions. It has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities were studied and our models were declared totally free from any types of such singularities. Finally, some cosmographic parameters were also briefly studied. Our investigation led to the fact that although GCCG with a far lesser negative pressure compared to other DE models, can overcome the relatively weaker gravity of RS II brane, with the help of the negative brane tension, yet for the DGP brane model with much higher gravitation, the incompetency of GCCG is exposed, and it cannot produce the accelerating scenario until it reaches the phantom era.Comment: 34 pages, 30 figures. arXiv admin note: substantial text overlap with arXiv:1204.3531, arXiv:1109.1481, arXiv:1109.357

    Does technology and Innovation Management improve Market Position? Empirical Evidence from Innovating Firms in South Africa

    Get PDF
    There is a growing recognition of the central role of technology and knowledge management for market success of organizations. Little is empirically know, however, about this relationship. Drawing on the South African Innovation Survey, a unique dataset on innovative behavior of South African firms in manufacturing and services, this paper investigates the question to what extent and in which ways do technology and innovation management activities affect firms’ market position. Findings show that conducting technology strategy activities pays out. Moreover, especially a combination of internal and external technology audits seems to be beneficial for organizational performance
    • …
    corecore