95 research outputs found

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Synaptic processes and immune-related pathways implicated in Tourette syndrome.

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Search for Neutrinoless tau Decays Involving the K_S^0 Meson

    Full text link
    We have searched for lepton flavor violating decays of the tau lepton with one or two KS0 mesons in the final state. The data used in the search were collected with the CLEO II and II.V detectors at the Cornell Electron Storage Ring (CESR) and correspond to an integrated luminosity of 13.9 fb^-1 at the Upsilon(4S) resonance. No evidence for signals were found, therefore we have set 90% confidence level (C.L.) upper limits on the branching fractions B(tau -> e KS0) mu KS0) e 2KS0) < 2.2e-6, and B(tau -> mu 2KS0) < 3.4e-6. These represent significantly improved upper limits on the two-body decays and first upper limits on the three-body decays.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD Rapid Communication

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~p{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7^{\circ}C. The ratio ωa/ω~p\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aμ(FNAL)=116592040(54)×1011a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+\mu^+ and μ\mu^-, the new experimental average of aμ(Exp)=116592061(41)×1011a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    The Physics of the B Factories

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Intellectual Property Rights: Governing Cultural and Educational Futures

    Get PDF
    This article uses Foucauldian theories of governmentality to examine ways in which intellectual property rights regimes are embedded within broad spectrums of global and globalising discourses and yet are enacted through changing subjectivities at the local level. Using the 2004 Australia–United States Free Trade Agreement as a case in point, it shows how culture, education, free trade, foreign policy, and national security intersect and have the potential to limit access to cultural knowledge and textual resources for young people and educators
    corecore